ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SupReMe影像重建和RF的玉米冠層LAI反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41671433)


LAI Retrieving of Corn Canopy Based on SupReMe Image Reconstruction and Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)Sentinel-2衛(wèi)星影像擁有3個(gè)對(duì)植被生長狀況非常敏感、空間分辨率為20m的紅邊波段(705,、740,、783nm),其空間分辨率與可見光和近紅外波段10m的空間分辨率不一致,,使Sentinel-2影像應(yīng)用受到限制的問題,,基于多光譜多分辨率估計(jì)的超分辨率(Super-resolution for multispectral multiresoltion estimation, SupReMe)算法將空間分辨率20m的6個(gè)波段重建為10m;以重建后的影像為數(shù)據(jù)源,,耦合PROSAIL輻射傳輸模型和隨機(jī)森林模型反演玉米冠層葉面積指數(shù)(LAI),,并以野外實(shí)測LAI驗(yàn)證其反演精度。結(jié)果表明,,采用SupReMe算法對(duì)Sentinel-2影像進(jìn)行重建后,,在保持光譜特性不變的同時(shí)提高了影像的空間細(xì)節(jié);基于重建影像和原始影像的LAI反演決定系數(shù)R2分別為0.70,、0.68,,均方根誤差RSME分別為0.240、0.262,。研究表明,,利用SupReMe算法重建后的Sentinel-2衛(wèi)星影像,能夠在提高玉米冠層LAI反演空間分辨率的同時(shí)提高反演精度,,在挖掘高分辨率農(nóng)作物生長信息方面具有很大潛力,。

    Abstract:

    Leaf area index (LAI) is of great significance for crop growth monitoring, agricultural disaster stress monitoring and yield prediction. There are three red-edge bands (705nm, 740nm, 783nm) for Sentinel-2 satellite images, which are very sensitive to vegetation growth. Unfortunately, the spatial resolution of these three red-edge bands (20m) is inconsistent with that of visible and near infrared bands (10m), which limits the application of Sentinel-2 images. For solving this problem, the six bands with spatial resolution of 20m was reconstructed into the spatial resolution of 10m by using super-resolution for multispectral multiresolution estimation (SupReMe) algorithm. Using the reconstructed Sentinel-2 image, the corn canopy LAI was retrieved by using the PROSAIL radiative transfer model and the random forest machine learning method. The results showed that the space details of Sentinel-2 image were improved while the spectral invariance was maintained after reconstruction by using SupReMe algorithm. The determination coefficients (R2) of LAI retrieving using reconstructed image was improved from 0.70 to 0.68 compared with resampling Sentinel-2 image, and the root mean square error (RSME) was improved from 0.240 to 0.262. The results showed that the SupReMe method can be used to reconstruct the spatial resolution of Sentinel-2 image and the reconstructed image can be used to improve corn canopy LAI retrieving accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘇偉,姚嬋,李穎,張明政,趙國強(qiáng),劉峻明.基于SupReMe影像重建和RF的玉米冠層LAI反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(4):190-196;256. SU Wei, YAO Chan, LI Ying, ZHANG Mingzheng, ZHAO Guoqiang, LIU Junming. LAI Retrieving of Corn Canopy Based on SupReMe Image Reconstruction and Random Forest[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):190-196,;256.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10
文章二維碼