ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜的黑土區(qū)土壤重金屬含量估測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(41702357、41801283)和吉林省教育廳科學(xué)技術(shù)項目(JJKH20180608KJ)


Hyperspectral Estimation of Heavy Metal Contents in Black Soil Region
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以黑龍江省訥河市采集的80份黑土樣品和高光譜實測數(shù)據(jù)為數(shù)據(jù)源,,對黑土中銅(Cu),、鋅(Zn)、錳(Mn)重金屬元素的光譜反射率及其特征變化進行研究,,分析了光譜反射率,、光譜反射率一階微分變換、光譜反射率連續(xù)統(tǒng)去除變換,、光譜反射率連續(xù)統(tǒng)去除一階微分變換與元素銅,、鋅、錳含量的相關(guān)性,,并利用相關(guān)系數(shù)法提取敏感波段,。利用核主成分分析(Kernel principal component analysis, KPCA)方法對高光譜敏感波段數(shù)據(jù)進行降維及特征提取,將特征信息作為極限學(xué)習(xí)機(Extreme learning machine, ELM)模型建模的樣本數(shù)據(jù),,構(gòu)建KPCA-ELM估測模型,,進行黑土重金屬含量的定量估算。結(jié)果表明:KPCA具有較強的非線性特征提取能力,,可以有效地選擇最佳變量集合,,KPCA-ELM模型預(yù)測土壤元素含量效果理想,3種重金屬元素含量估測的決定系數(shù)均達(dá)到0.6以上,,其中,,鋅元素預(yù)測精度最高,決定系數(shù)和均方根誤差分別為0.805和3.275mg/kg,,比特征提取前模型預(yù)測精度優(yōu)化了14.0%和18.5%,,說明構(gòu)建的KPCA-ELM模型是一種快速可行的重金屬含量高光譜估測方法,。

    Abstract:

    Taking 80 black soil samples collected from Nehe City, Heilongjiang Province, and hyperspectral measured data as data sources, the spectral reflectance and its feature changes of copper (Cu), zinc (Zn), manganese (Mn) in black soil were analyzed, the correlations between four different forms of spectral reflectance, which included original, first-order differential, continuum removal, and firstorder derivative of continuum removal and soil Cu, Zn, Mn contents were calculated, and the correlation coefficient method was used to extract sensitive bands. Then the kernel principal component analysis (KPCA) was applied for dimension reduction and feature extraction of hyperspectral sensitive band data, and the feature information was input into extreme learning machine (ELM), and the KPCA-ELM estimation model was constructed to quantitatively estimate the heavy metal contents. The results showed that KPCA had a strong ability to extract nonlinear features and effectively selected the optimal variable set. The KPCA-ELM model was feasible in predicting soil element content and the determination coefficients of the three heavy metal elements were all more than 0.6, where the prediction accuracy of Zn was the highest among the three heavy metal elements. And the determination coefficient and root mean square error were 0.805 and 3.275mg/kg respectively, which were improved by 14.0% and 18.5% compared with without feature extraction. Therefore, KPCA-ELM model was a fast and feasible method for hyperspectral estimation of heavy metal content.

    參考文獻
    相似文獻
    引證文獻
引用本文

林楠,劉翰霖,孟祥發(fā),劉海琪,楊佳佳.基于高光譜的黑土區(qū)土壤重金屬含量估測[J].農(nóng)業(yè)機械學(xué)報,2021,52(3):218-225. LIN Nan, LIU Hanlin, MENG Xiangfa, LIU Haiqi, YANG Jiajia. Hyperspectral Estimation of Heavy Metal Contents in Black Soil Region[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):218-225.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-10
  • 出版日期:
文章二維碼