ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于生成對抗網(wǎng)絡(luò)的禽蛋圖像數(shù)據(jù)生成研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(31871863)


Poultry Egg Image Data Generating Based on Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在進(jìn)行禽蛋無損檢測研究時,,需要花費(fèi)大量的人力和物力采集禽蛋圖像數(shù)據(jù),,為解決該問題,設(shè)計了一種基于深度卷積生成對抗網(wǎng)絡(luò)(Deep convolutional generative adversarial networks,,DCGAN)的改進(jìn)禽蛋圖像數(shù)據(jù)生成網(wǎng)絡(luò),。該網(wǎng)絡(luò)分為生成器與判別器,生成器用于禽蛋圖像數(shù)據(jù)生成,,判別器對生成的禽蛋圖像進(jìn)行真實性判斷,,兩者相互對抗最終生成高質(zhì)量的禽蛋圖像數(shù)據(jù)。為了提高生成的禽蛋圖像質(zhì)量,,使用殘差網(wǎng)絡(luò)構(gòu)建生成器和判別器,,引入Wasserstein距離和加梯度懲罰的損失函數(shù),分別在透射和反射情況下對禽蛋圖像進(jìn)行生成研究,。該方法有效地解決了大量禽蛋圖像數(shù)據(jù)的采集問題,,為后期禽蛋圖像識別與檢測提供了數(shù)據(jù)基礎(chǔ),同時也為后續(xù)禽蛋數(shù)據(jù)庫構(gòu)建提供了技術(shù)支持,。

    Abstract:

    China is a big country in the production and consumption of poultry eggs, and testing the quality of poultry egg is very important. Machine vision plays an important role in non-destructive testing of poultry eggs. Computer vision is one of the commonly used technical methods in the field of non-destructive testing of poultry eggs. This technology needs to collect a large number of poultry egg image data for analysis and modeling in order to obtain a good recognition effect. When doing research on non-destructive testing of poultry eggs, researchers need to spend a lot of manpower and material resources on the collection of image data of poultry eggs. Aiming to solve this problem, an improved egg image data generation network based on unsupervised representation learning with deep convolutional generative adversarial networks (DCGAN) was proposed. The network was divided into a generator and a discriminator. The generator was used to generate the egg image data. The discriminator judged the authenticity of the generated egg image. The generator and discriminator competed with each other and finally generated high-quality egg image data. In order to improve the quality of the generated egg images, a residual network was used to construct a generator and discriminator, the loss functions of Wasserstein distance and gradient penalty were introduced to research the image generation in the case of egg transmission and egg reflection. This method effectively solved the problem that it was difficult to collect a large number of poultry egg image data, provided a data basis for the later identification and detection of poultry egg image, and also provided technical support for the subsequent establishment of poultry egg database.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李慶旭,王巧華,馬美湖.基于生成對抗網(wǎng)絡(luò)的禽蛋圖像數(shù)據(jù)生成研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(2):236-245. LI Qingxu, WANG Qiaohua, MA Meihu. Poultry Egg Image Data Generating Based on Generative Adversarial Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(2):236-245.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-02-10
  • 出版日期: 2021-02-10
文章二維碼