ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于ALR-GMM的群養(yǎng)豬攻擊行為識別算法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

陜西省重點(diǎn)產(chǎn)業(yè)創(chuàng)新鏈(群)-農(nóng)業(yè)領(lǐng)域項(xiàng)目(2019ZDLNY02-05),、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0701603)、國家自然科學(xué)基金項(xiàng)目(31872399)和美國農(nóng)業(yè)部國家食品與農(nóng)業(yè)項(xiàng)目(2017-67007-26176)


Recognition of Aggressive Behaviour in Group-housed Pigs Based on ALR-GMM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    群養(yǎng)豬攻擊行為是評估豬群對微環(huán)境適應(yīng)性的重要指標(biāo),。活動(dòng)指數(shù)模型能夠描述豬群行為模式,,已經(jīng)在群養(yǎng)豬攻擊行為識別研究中得到初步驗(yàn)證,。然而,養(yǎng)殖設(shè)施的差異性和動(dòng)態(tài)背景環(huán)境等因素所導(dǎo)致的環(huán)境適應(yīng)性差是限制其商業(yè)化應(yīng)用的主要障礙,。本文基于遞歸背景建模思想,,在高斯混合模型(GMM)中引入雙曲正切函數(shù),提出了一種自適應(yīng)學(xué)習(xí)率GMM的活動(dòng)指數(shù)計(jì)算方法(ALR-GMM),,能夠在動(dòng)態(tài)背景環(huán)境下準(zhǔn)確提取動(dòng)物活動(dòng)指數(shù),。與經(jīng)典模型相比,平均相對誤差從15.08%降到14.34%,。育肥豬攻擊行為識別試驗(yàn)中,,采用ALR-GMM算法提取行為視頻單元的活動(dòng)指數(shù)特征,構(gòu)建了活動(dòng)指數(shù)最大值,、平均值,、方差和標(biāo)準(zhǔn)差特征向量,采用線性核函數(shù)支持向量機(jī)建立分類器,。結(jié)果表明,,本文算法的正確率,、靈敏度、特效度和精度分別為97.6%,、97.9%,、97.7%和97.8%,滿足實(shí)際應(yīng)用需求,。

    Abstract:

    The activity index has been widely used as an important indicator to quantify the behavior response of livestock animals to their micro-environment. The variety of breeding facilities and dynamic backgrounds brings challenges to precisely monitor this indicator by the approach based on background subtraction. Aiming to extract the activity index under the dynamic background, a novel approach based on the Gaussian mixture model was proposed, in which the hyperbolic tangent function was introduced to regulate the learning rate parameter (ALR-GMM). In each iteration, through an adaptive learning rate regulation mechanism, the ALR-GMM can describe the image background and detect the moving pixels synchronously. The algorithm was evaluated on the manually labeled image. Compared with the calculation methods based on the background subtraction and the classical GMM methods, the mean relative errors were reduced by 0.74 percentage points and 3.74 percentage points, respectively. In order to further verify the feasibility, the proposed algorithm was applied to recognize aggressive behavior of group-housed pigs. The original video was divided into 3s episode units. In each video unit, the maximum, mean, variance and standard deviation of the activity index were taken as the feature vector. The behavior classifier was established by the linear kernel SVM. The results showed that the accuracy, sensitivity, specificity and precision were 97.6%, 97.9%, 97.7% and 97.8%, respectively, which met the requirements of practical application.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉冬,何東健,陳晨,STEIBEL Juan, SIEGFORD Janice, NORTON Tomas.基于ALR-GMM的群養(yǎng)豬攻擊行為識別算法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(1):201-208. LIU Dong, HE Dongjia, CHEN Chen, STEIBEL Juan, SIEGFORD Janice, NORTON Tomas. Recognition of Aggressive Behaviour in Group-housed Pigs Based on ALR-GMM[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):201-208.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼