ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的群體種鴨蛋受精信息檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(31871863)


Detection Method for Fertilizing Information of Group Duck Eggs Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)我國(guó)禽蛋孵化行業(yè)以人工方式剔除無(wú)精蛋自動(dòng)化程度低的問(wèn)題,,以孵化5d的群體種鴨蛋為研究對(duì)象,利用圖像采集裝置采集群體種鴨蛋圖像,在常用單步多框檢測(cè)器(Single shot multibox detector,,SSD)網(wǎng)絡(luò)的基礎(chǔ)上提出一種改進(jìn)SSD目標(biāo)檢測(cè)算法,,并采用該方法對(duì)孵化早期整盤(pán)群體種鴨蛋中的受精蛋與無(wú)精蛋進(jìn)行識(shí)別。利用MobileNetV3輕量化網(wǎng)絡(luò)作為模型的特征提取網(wǎng)絡(luò),,可快速高效提取圖像特征,。結(jié)果表明:本文建立的模型對(duì)孵化早期群體種鴨蛋中受精蛋與無(wú)精蛋的平均識(shí)別精度為98.09%、召回率為97.32%,、漏檢率為0,,優(yōu)于改進(jìn)前網(wǎng)絡(luò)模型的96.88%、96.17%,、1.04%,。本文方法可為種鴨蛋孵化產(chǎn)業(yè)相關(guān)智能機(jī)器人或機(jī)械手的研發(fā)提供技術(shù)支撐。

    Abstract:

    The method of removing unfertilized eggs in China’s poultry egg incubation industry relies on artificial irradiation of eggs, with low degree of automation. The accurate identification of fertilized eggs in group duck eggs during the early incubation period is the key technology to realize the automation and intelligence of the incubation process. A group of duck eggs hatched for five days was taken as the research object, and the images of the group duck eggs were collected using corresponding image acquisition devices. Based on the commonly used single shot multibox detector (SSD) network, an improved SSD target detection algorithm was proposed to accurately identify the fertilized eggs and non-fertilized eggs in the eggs of early hatching period. Using MobileNetV3 lightweight network as a model feature extraction network to quickly and efficiently extract image features. At the same time, the inverse residual block was used instead of the standard convolution layer in the SSD regression detection network to improve the detection network efficiency. The results showed that the average recognition accuracy of the model was 98.09%, the recall rate was 97.32%, and themissed detection rate was zero. It was better than 96.88%, 96.17% and 1.04% of the network model before the improvement. Therefore, this method can provide a new basis for the research and development of intelligent robot or robot hand related to duck egg incubation industry and accelerate the intellectualization of poultry egg incubation industry.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李慶旭,王巧華,肖仕杰,顧偉,馬美湖.基于深度學(xué)習(xí)的群體種鴨蛋受精信息檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(1):193-200. LI Qingxu, WANG Qiaohua, XIAO Shijie, GU Wei, MA Meihu. Detection Method for Fertilizing Information of Group Duck Eggs Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):193-200.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-06
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼