ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于自適應(yīng)字典的小樣本高光譜圖像分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0301105)和河南省科技攻關(guān)項(xiàng)目(192102110196)


Hyperspectral Image Classification Method with Small Sample Set Based on Adaptive Dictionary
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在有限標(biāo)記樣本下,,為了有效協(xié)同空譜信息提高高光譜圖像的分類性能,提出了一種基于自適應(yīng)字典的小樣本高光譜圖像分類方法,。首先,,對高光譜圖像進(jìn)行熵率超像素分割,分析標(biāo)記樣本的超像素區(qū)域和光譜近鄰,,將鑒別力高的樣本擴(kuò)展至標(biāo)記樣本集,;然后,在擴(kuò)展的標(biāo)記樣本集上分析測試樣本的空譜信息,,對不同的測試樣本精簡標(biāo)記樣本集,,形成自適應(yīng)字典;最后,,在自適應(yīng)字典上,,協(xié)同空譜信息重構(gòu)測試樣本,,在協(xié)同表示中同時考慮重構(gòu)字典中空譜信息的競爭性。實(shí)驗(yàn)結(jié)果表明,,對比傳統(tǒng)的基于光譜的方法和固定窗口尺寸下融合空譜特征的高光譜圖像分類方法,,在印地安農(nóng)林?jǐn)?shù)據(jù)集上,當(dāng)訓(xùn)練樣本數(shù)目僅為樣本集數(shù)目2%時,,本文方法總體分類精度為91.45%,,比其他方法高3.48~39.52個百分點(diǎn);在訓(xùn)練樣本數(shù)為1%的帕維亞大學(xué)數(shù)據(jù)集上,,該方法的總體分類精度達(dá)到95.54%,,比其他方法高2.45~21.63個百分點(diǎn),驗(yàn)證了本文方法的有效性,。

    Abstract:

    To effectively utilize the spectral and spatial information of limited labeled training samples in hyperspectral image (HSI) classification, a HSI classification approach with small sample set based on adaptive dictionary was proposed. Firstly, discriminating pixels of each labeled sample were extracted from spatial information with entropy rate segmented superpixels and spectral neighborhood, the training set was then extended by adding the discriminating pixels. Furthermore, the spatial-spectral information of each test sample was analyzed, and its adaptive dictionary was constructed by simplifying the extended training sample set. Finally, the spatial-spectral reconstruction was performed on the adaptive dictionary of each test pixel, where the collaboration and competition among dictionary elements were both considered. To evaluate the performance of the proposed approach, it was compared with some traditional methods by using spectral information and the state-of-the-art methods incorporated traditional information of fixed window size, experimental results on Indian Pines dataset with only 2% training set demonstrated that the overall accuracy of the proposed approach was 91.45%, which was 3.48~39.52 percentage points higher than that of other methods, and the results on Pavia University HSI with 1% training set showed that the overall accuracy of the proposed approach reached 95.54%, which was 2.45~21.63 percentage points higher than that of others, indicating the effectiveness of the proposed approach.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

虎曉紅,司海平.基于自適應(yīng)字典的小樣本高光譜圖像分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(1):154-161. HU Xiaohong, SI Haiping. Hyperspectral Image Classification Method with Small Sample Set Based on Adaptive Dictionary[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):154-161.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼