ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于U-Net網(wǎng)絡(luò)的果園視覺導(dǎo)航路徑識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0700100)和廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2019B090922001)


Path Recognition of Orchard Visual Navigation Based on U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)視覺導(dǎo)航系統(tǒng)在果園環(huán)境中面臨的圖像背景復(fù)雜、干擾因素多等問題,,提出了一種基于U-Net網(wǎng)絡(luò)的果園視覺導(dǎo)航路徑識(shí)別方法,。使用Labelme對(duì)采集圖像中的道路信息進(jìn)行標(biāo)注,制作果園數(shù)據(jù)集,;基于U-Net語義分割算法,,在數(shù)據(jù)增強(qiáng)的基礎(chǔ)上對(duì)全卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,得到道路分割模型;根據(jù)生成的道路分割掩碼進(jìn)行導(dǎo)航信息提取,,生成路徑擬合中點(diǎn),;基于樣條曲線擬合原理對(duì)擬合中點(diǎn)進(jìn)行多段三次B樣條曲線擬合,完成導(dǎo)航路徑的識(shí)別,;最后,,進(jìn)行了實(shí)驗(yàn)驗(yàn)證。結(jié)果表明,,臨界閾值為0.4時(shí),,語義分割模型在弱光、普通光以及強(qiáng)光照條件下的分割交并比分別為89.52%,、86.45%,、86.16%,能夠平穩(wěn)實(shí)現(xiàn)果園道路像素級(jí)分割,;邊緣信息提取與路徑識(shí)別方法可適應(yīng)不同視角下的道路掩碼形狀,,得到較為平順的導(dǎo)航路徑;在不同光照和視角條件下,,平均像素誤差為9.5像素,,平均距離誤差為0.044m,已知所在果園道路寬度約為3.1m,,平均距離誤差占比為1.4%,;果園履帶底盤正常行駛速度一般在0~1.4m/s之間,單幅圖像平均處理時(shí)間為0.154s,。在當(dāng)前果園環(huán)境和硬件配置下,,本研究可為視覺導(dǎo)航任務(wù)提供有效參考。

    Abstract:

    Aiming at the visual navigation system works in the orchard environment, a visual navigation method based on U-Net for path recognition was proposed. Labelme was used to label the road mask in the collected images and made the orchard dataset. Based on data enhancement, the convolutional neural network was trained to obtain the orchard road segmentation model which could identify the road region. The road segmentation mask was used to get navigation information and generate keypoints for path fitting. Using the midpoints as control points, the navigation path was recognized by multi-segment cubic B-spline curve fitting method. Experiments of semantic segmentation and path recognition were carried out respectively, when the critical threshold is 0.4, the results showed that IoU of semantic segmentation model in weak light, ordinary light, and strong light was 89.52%, 86.45% and 86.16%, respectively. The method of edge information extraction and path recognition could adapt to various visual angles of the road mask and get a smooth navigation path. Under different illumination and visual angle conditions, the average pixel error was 9.5 pixel, and the average distance error was 0.044m. It was known that the width of the road was about 3.1m, so the average distance error ratio was 1.4%. The normal speed of the tracked vehicle in the orchard was mostly 0~1.4m/s, and the average processing time of a single field image was 0.154s. Under the current orchard environment and hardware configuration, it was proved that this method had a good performance in accuracy and real-time. This research can provide an effective reference for visual navigation task in the orchard environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓振浩,李佳,苑嚴(yán)偉,方憲法,趙博,朱立成.基于U-Net網(wǎng)絡(luò)的果園視覺導(dǎo)航路徑識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(1):30-39. HAN Zhenhao, LI Jia, YUAN Yanwei, FANG Xianfa, ZHAO Bo, ZHU Licheng. Path Recognition of Orchard Visual Navigation Based on U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):30-39.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼