ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

多目標(biāo)肉牛進(jìn)食行為識(shí)別方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017BY067)、寧夏智慧農(nóng)業(yè)產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心項(xiàng)目(2017DC53),、國(guó)家自然科學(xué)基金項(xiàng)目(41771315)和國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)


Recognition Method of Feeding Behavior of Multi-target Beef Cattle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于計(jì)算機(jī)視覺(jué)技術(shù),,借助已有系統(tǒng)獲得肉牛進(jìn)食行為數(shù)據(jù),并與體重變化,、健康狀況等進(jìn)行關(guān)聯(lián)分析,,對(duì)肉牛科學(xué)養(yǎng)殖具有重要意義,。為此提出了一種基于機(jī)器視覺(jué)的肉牛進(jìn)食行為識(shí)別方法,。該方法采用YOLOv3模型對(duì)觀測(cè)范圍內(nèi)的肉牛目標(biāo)進(jìn)行檢測(cè),利用卷積神經(jīng)網(wǎng)絡(luò)識(shí)別單個(gè)目標(biāo)的進(jìn)食行為,,進(jìn)而實(shí)現(xiàn)對(duì)多目標(biāo)肉牛進(jìn)食行為的識(shí)別,。卷積操作時(shí),利用填充(padding)增強(qiáng)網(wǎng)絡(luò)對(duì)目標(biāo)邊緣特征的提取能力,;使用修正線性單元(ReLU)為激活函數(shù),,防止梯度消失;采用丟棄(dropout)方法提高網(wǎng)絡(luò)的泛化能力,。獲取實(shí)際肉牛養(yǎng)殖場(chǎng)的監(jiān)控視頻,,構(gòu)建數(shù)據(jù)集,分別在8組測(cè)試集上進(jìn)行試驗(yàn),,本文方法對(duì)觀測(cè)范圍內(nèi)肉牛目標(biāo)檢測(cè)的平均精確度為83.8%,,進(jìn)食行為識(shí)別的平均精確度為79.7%,、平均召回率為73.0%、平均準(zhǔn)確率為74.3%,,能夠滿足肉牛進(jìn)食行為的監(jiān)測(cè)需求,。基于YOLOv3模型和卷積神經(jīng)網(wǎng)絡(luò)的多目標(biāo)肉牛進(jìn)食行為識(shí)別方法具有較高的準(zhǔn)確性,,為肉牛行為非接觸式監(jiān)測(cè)提供了新的途徑,。

    Abstract:

    Based on computer vision technology, the data of beef cattles’ feeding behavior can be obtained with the help of the existing system, and carrying out the correlation analysis with weight change, health status, etc. is of great significance for scientific beef breeding. A method of beef cattles’ feeding behavior recognition based on machine vision was proposed. YOLOv3 was used to detect the beef cattle targets in the observation range, and convolutional neural network was used to recognize the feeding behavior of single target, and then the recognition of feeding behavior of multitarget beef cattle was realized. In convolution operation, padding was used to enhance the network’s ability to extract the edge features of the target; the corrected linear units (ReLU) was used as the activation function to prevent the gradient from disappearing; the dropout method was used to improve the generalization ability of the network. Taking the actual beef cattle farm monitoring video as the research object, the experiment was carried out on eight test sets. The average precision of beef cattle target detection within the observation range was 83.8%, the average precision of feeding behavior recognition was 79.7%, the average recall rate was 73.0%, and the average accuracy rate was 74.3%, which can meet the monitoring of beef cattle feeding behavior. The multiobjective recognition method of beef cattle feeding behavior based on YOLOv3 and convolutional neural network had good accuracy, and provided a new way for noncontact monitoring of beef cattle behavior.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,武杰,李永恒,李書(shū)琴,王紅艷,宋榮杰.多目標(biāo)肉牛進(jìn)食行為識(shí)別方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(10):259-267. ZHANG Hongming, WU Jie, LI Yongheng, LI Shuqin, WANG Hongyan, SONG Rongjie. Recognition Method of Feeding Behavior of Multi-target Beef Cattle[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(10):259-267.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-10
  • 出版日期: 2020-10-10
文章二維碼