ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于遷移學(xué)習(xí)的農(nóng)作物病蟲害檢測(cè)方法研究與應(yīng)用
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61602064)和歐盟Erasmus+SHYFTE項(xiàng)目(598649-EPP-1-2018-1-FR-EPPKA2-CBHE-JP)


Research and Application of Crop Diseases Detection Method Based on Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高農(nóng)作物病蟲害嚴(yán)重程度(健康,、一般、嚴(yán)重)的分類效果,,采用遷移學(xué)習(xí)方式并結(jié)合深度學(xué)習(xí)提出了一種基于殘差網(wǎng)絡(luò)(ResNet 50)的CDCNNv2算法,。通過對(duì)10類作物的3萬多幅病蟲害圖像進(jìn)行訓(xùn)練,獲得了病蟲害嚴(yán)重程度分類模型,,其識(shí)別準(zhǔn)確率可達(dá)91.51%,。為了驗(yàn)證CDCNNv2模型的魯棒性,分別與使用遷移學(xué)習(xí)的ResNet 50,、Xception,、VGG16、VGG19,、DenseNet 121模型進(jìn)行對(duì)比試驗(yàn),,結(jié)果表明,CDCNNv2模型比其他模型的平均精度提升了2.78~10.93個(gè)百分點(diǎn),,具有更高的分類精度,,病蟲害嚴(yán)重程度識(shí)別的魯棒性增強(qiáng)?;谠撍惴ㄋ?xùn)練的模型,,結(jié)合Android技術(shù)開發(fā)了一款實(shí)時(shí)在線農(nóng)作物病蟲害等級(jí)識(shí)別APP,,通過拍攝農(nóng)作物葉片病蟲害區(qū)域圖像,能夠在0.1~0.5s之內(nèi)獲取識(shí)別結(jié)果(物種-病害種類-嚴(yán)重程度)及防治建議,。

    Abstract:

    Classifying the severity of crop diseases is the staple basic element of the plant pathology for making disease prevent and control strategies. In order to achieve better results in the classification of the severity (healthy, general or severe) of crop diseases, a CDCNNv2 algorithm based on residual network (ResNet 50) and deep transfer learning was proposed. By training more than 30,000 crop disease images which were divided into 10 species, a model for the classification of disease severity was obtained, and the recognition accuracy could reach 91.51%. For verifying the robustness of the CDCNNv2 model, comparative experiments were carried out with ResNet 50, Xception, VGG16, VGG19 and DenseNet 121 that used transfer learning. The experimental results showed that the average accuracy of the CDCNNv2 model was increased by 2.78~10.93 percentage points, which had higher classification accuracy and strengthened the robustness of crop disease severity identification. At the same time, based on the model trained by this algorithm, combined with Android technology, a realtime and online crop diseases severity recognition APP was developed. By photographing the disease areas of the crop leaves, the recognition results (species-disease-severity) and recommendations for prevention and treatment can be obtained between 0.1s and 0.5s. In addition, other related supporting functions such as disease encyclopedia made the APP more complete, which can provide effective solutions and ideas for the prevention and treatment of crop diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余小東,楊孟輯,張海清,李丹,唐毅謙,于曦.基于遷移學(xué)習(xí)的農(nóng)作物病蟲害檢測(cè)方法研究與應(yīng)用[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(10):252-258. YU Xiaodong, YANG Mengji, ZHANG Haiqing, LI Dan, TANG Yiqian, YU Xi. Research and Application of Crop Diseases Detection Method Based on Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(10):252-258.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-10
  • 出版日期: 2020-10-10
文章二維碼