ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于雷達(dá)遙感的不同深度土壤含鹽量反演模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403302),、國(guó)家自然科學(xué)基金項(xiàng)目(51979232)和陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2019JM-066)


Inversion Model of Soil Salt Content in Different Depths Based on Radar Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為及時(shí),、有效地監(jiān)測(cè)鹽漬化土壤含鹽量,以內(nèi)蒙古河套灌區(qū)沙壕渠灌域?yàn)檠芯繀^(qū),,將Sentinel-1雷達(dá)影像作為數(shù)據(jù)源,,同步采集不同深度土壤含鹽量數(shù)據(jù),通過(guò)組合兩組雷達(dá)后向散射系數(shù)構(gòu)建多種指數(shù),,并用灰度關(guān)聯(lián)(Gray correlation degree,GCD)排除共線性強(qiáng)的指數(shù),,采用偏最小二乘回歸(Partial least squares regression,PLSR)、分位數(shù)回歸(Quantile regression,,QR)和支持向量機(jī)(Support vector machine regression,,SVM)3種方法,構(gòu)建0~10cm,、10~20cm不同深度下的土壤含鹽量反演模型,。結(jié)果表明,在3種回歸方法中,,SVM回歸模型的精度最高,,模型建模集決定系數(shù)R2c、驗(yàn)證集決定系數(shù)R2p均在04以上,,建模集均方根誤差RMSEc,、驗(yàn)證集均方根誤差RMSEp均小于03%,分位數(shù)回歸模型次之,,偏最小二乘回歸模型最差,;在各反演深度下,0~10cm深度的反演精度均高于10~20cm深度的反演精度,,其中在0~10cm深度下SVM反演模型效果優(yōu)于其他模型,,R2c、R2p分別為0568和0686,,RMSEc,、RMSEp分別為0.201%和0.151%。本研究可為雷達(dá)遙感監(jiān)測(cè)裸土期土壤鹽漬化提供參考,。

    Abstract:

    With the aim to monitor the salinization of soil salt content timely and effectively, taking Shahaoqu District of Hetao Irrigation Area as study area, the Sentinel-1 image as a data source, synchronous acquisition different depths of soil salinity data, by combining the two groups of radar backscatter coefficient to build a variety of indices, by using gray correlation degree (GCD) index to exclude the index with strong collinearity, and partial least squares regression (PLSR), quantile regression (QR) and support vector machine regression (SVM) were used to construct soil salinity inversion models at different depths of 0~10cm and 10~20cm. The results showed that among the three regression methods the accuracy of SVM regression model was the highest, the model modeling set determination coefficient R2c and the validation set determination coefficient R2p were all above 04, the modeling set root mean square error RMSEc and the validation set root mean square error RMSEp were all less than 03%, QR regression model was the next, PISR regression model was the worst. At each inversion depth, the inversion accuracy of 0~10cm was higher than that of 10~20cm, among which the SVM inversion model was better than other models at 0~10cm depth, R2c and R2p were 0.568 and 0.686, respectively, and RMSEc and RMSEp were 0.201% and 0.151%, respectively. The results could provide a reference for monitoring soil salinization in bare soil stage by radar remote sensing.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張智韜,杜瑜燕,勞聰聰,楊寧,周永財(cái),楊亞龍.基于雷達(dá)遙感的不同深度土壤含鹽量反演模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(10):243-251. ZHANG Zhitao, DU Yuyan, LAO Congcong, YANG Ning, ZHOU Yongcai, YANG Yalong. Inversion Model of Soil Salt Content in Different Depths Based on Radar Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(10):243-251.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-01-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-10
  • 出版日期: 2020-10-10
文章二維碼