ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于特征點(diǎn)鄰域Hough變換的水稻秧苗行檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD020060502)和中國(guó)農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)項(xiàng)目(Y2019XK11)


Detection of Rice Seedling Rows Based on Hough Transform of Feature Point Neighborhood
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    水稻秧苗行檢測(cè)對(duì)于精準(zhǔn)農(nóng)業(yè)和自動(dòng)導(dǎo)航至關(guān)重要,,為此提出一種基于特征點(diǎn)鄰域Hough變換的水稻秧苗行檢測(cè)方法,,該方法可以有效解決雜草密度分布,、光照強(qiáng)度和秧苗行曲率變化等因素對(duì)秧苗行檢測(cè)的影響,。該方法主要包括3個(gè)步驟:水稻秧苗行圖像數(shù)據(jù)庫(kù)的建立、水稻秧苗特征點(diǎn)提取和秧苗行中心線識(shí)別,。首先,,在雜草萌發(fā)期建立水稻秧苗在不同光照條件(晴、陰天),、不同雜草密度分布和不同秧苗生長(zhǎng)狀況的水稻秧苗行圖像數(shù)據(jù)庫(kù),;然后,采用基于Faster RCNN網(wǎng)絡(luò)的秧苗檢測(cè)模型獲得水稻秧苗的特征點(diǎn),即預(yù)測(cè)結(jié)果的中心點(diǎn),;最后,,采用提出的基于特征點(diǎn)鄰域的Hough變換算法識(shí)別秧苗行中心線。實(shí)驗(yàn)表明,,本文方法對(duì)測(cè)試集秧苗行平均識(shí)別準(zhǔn)確率達(dá)到92%,,對(duì)不同雜草密度分布的秧苗行平均識(shí)別精度小于0.5°,對(duì)孤立的雜草噪聲和光照變化不敏感,,對(duì)曲率較大的秧苗行也能準(zhǔn)確識(shí)別,,具有較好的魯棒性和識(shí)別精度。

    Abstract:

    The detection of rice seedling rows is essential for precision agriculture and automatic navigation. A method based on Hough transform of feature point neighborhood was proposed to detect rice seedling rows, which can effectively solve the effects of weed distribution with different densities, different light intensities, curvature changes of seedling rows and other factors. The method had three main steps: the establishment of images database of rice seedling rows, feature point extraction of rice seedlings and the recognition of seedling row centerlines. Firstly, the image database of rice seedling rows under different light conditions (sunny and cloudy days), different weed density distributions and seedling growth status was established during the weed germination period; and then the object detection model based on Faster RCNN network was adopted to detect the positions of rice seedlings; finally, the proposed Hough transform algorithm based on the feature point neighborhood was used to recognize the center line of the seedling row. Experiments indicated that the proposed method had an average accuracy of 92% on the test set, and an average recognition accuracy of seedling rows less than 05° under high and low weed density distributions. It was not sensitive to isolated weed noise and light changes, and can also accurately recognize seedling rows with large curvatures. Therefore, the proposed method had good robustness and recognition accuracy. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王姍姍,余山山,張文毅,王興松.基于特征點(diǎn)鄰域Hough變換的水稻秧苗行檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(10):18-25. WANG Shanshan, YU Shanshan, ZHANG Wenyi, WANG Xingsong. Detection of Rice Seedling Rows Based on Hough Transform of Feature Point Neighborhood[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(10):18-25.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-10
  • 出版日期: 2020-10-10
文章二維碼