ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于語(yǔ)義分割的食品標(biāo)簽文本檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC1603305,、2018YFC1603302)


Text Detection of Food Labels Based on Semantic Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    食品包裝上的標(biāo)簽文本含有生產(chǎn)日期,、營(yíng)養(yǎng)成分,、生產(chǎn)廠家等食品相關(guān)信息,,這些不僅為消費(fèi)者購(gòu)買食品提供了重要依據(jù),,也有助于食品監(jiān)督抽檢機(jī)構(gòu)發(fā)現(xiàn)潛在的食品安全問(wèn)題,。食品標(biāo)簽文本檢測(cè)是食品標(biāo)簽自動(dòng)識(shí)別的前提,有助于降低人工錄入成本,、提高數(shù)據(jù)處理效率,。基于食品包裝圖像構(gòu)建數(shù)據(jù)集,,提出了一種基于語(yǔ)義分割的距離場(chǎng)模型,,以檢測(cè)食品標(biāo)簽。該模型包含像素分類和距離場(chǎng)回歸兩類任務(wù),,其中像素分類任務(wù)分割處理圖像中的文本區(qū)域,,距離場(chǎng)回歸任務(wù)預(yù)測(cè)文本區(qū)域內(nèi)的像素點(diǎn)到該區(qū)域邊界的歸一化距離。為提升模型的檢測(cè)性能,,在回歸預(yù)測(cè)模塊中通過(guò)增加注意力模塊優(yōu)化模型結(jié)構(gòu),,并針對(duì)距離場(chǎng)回歸任務(wù)損失值過(guò)小、影響模型訓(xùn)練優(yōu)化問(wèn)題對(duì)其損失函數(shù)進(jìn)行了改進(jìn),。消融實(shí)驗(yàn)結(jié)果表明,,增加注意力模塊和損失函數(shù)的改進(jìn)使得模型的準(zhǔn)確率分別提高了4.39,、3.80個(gè)百分點(diǎn),有效提高了檢測(cè)準(zhǔn)確率,。食品包裝圖像數(shù)據(jù)集的對(duì)比實(shí)驗(yàn)表明,,采用本文模型檢測(cè)食品標(biāo)簽文本具有較好的性能,其召回率,、準(zhǔn)確率分別達(dá)到87.61%,、76.50%。

    Abstract:

    The label texts on food package include some information like production date, nutrition facts and production corporation etc. The information provides important foundation for consumers to buy food. It also can help the food supervision and inspection administrations to discover the potential problems of food safety. Food label detection is the groundwork of food label recognition. It can help to decrease the heavy workload of manual inputting and advance efficiency of data processing. The dataset of food label was constructed firstly, and then a semantic segmentation based distance field model (DFM) was proposed. In DFM two tasks were included: pixel classification and distance field regression. The pixel classification task was used to segment the text from background regions, and the distance field regression task was used to predict the normalized distance from the pixel located in the text region to the boundary of text region. For effectively using the correlation of two tasks, an attention module was added into DFM to optimize the model structure. In addition, the loss function was improved to resolve the loss value of the distance field regression as it was too small to train smoothly. The results of ablation experiment showed that the accuracy of the proposed model was increased by 4.39 percentage points and 3.80 percentage points respectively according to the improvement of attention module and loss function. The comparative experiments of different model methods showed that DFM had good performance in detecting the text of food labels, and the recall rate and precision were 87.61% and 76.50%, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

田萱,王子亞,王建新.基于語(yǔ)義分割的食品標(biāo)簽文本檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(8):336-343. TIAN Xuan, WANG Ziya, WANG Jianxin. Text Detection of Food Labels Based on Semantic Segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(8):336-343.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-08-10
  • 出版日期: 2020-08-10
文章二維碼