ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于最優(yōu)子集選擇的水稻穗無(wú)人機(jī)圖像分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200700,、2017YFD0300700)


Best Subset Selection Based Rice Panicle Segmentation from UAV Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為探索有效的稻穗識(shí)別特征選取方法,,解決基于無(wú)人機(jī)數(shù)碼影像水稻產(chǎn)量估測(cè)中圖像顏色空間各個(gè)通道或指數(shù)對(duì)水稻穗識(shí)別能力不清的問(wèn)題,利用2017年和2018年沈陽(yáng)農(nóng)業(yè)大學(xué)超級(jí)稻成果轉(zhuǎn)化基地水稻試驗(yàn)田無(wú)人機(jī)高清數(shù)碼影像,、地面小區(qū)樣方內(nèi)水稻穗數(shù)量等實(shí)測(cè)數(shù)據(jù),,構(gòu)建了水稻穗、葉,、背景的3分類(lèi)圖像樣本庫(kù),,應(yīng)用最優(yōu)子集選擇(Best subset selection)算法分析了RGB和HSV顏色空間各個(gè)通道或指數(shù)對(duì)水稻穗的識(shí)別能力,提取適合東北粳稻稻穗圖像分割的7種特征參數(shù),,以此特征為輸入構(gòu)建了基于BP神經(jīng)網(wǎng)絡(luò)的稻穗分割模型,,進(jìn)一步對(duì)稻穗圖像進(jìn)行連通域分析,獲取稻穗數(shù)量,,并與地面實(shí)測(cè)數(shù)據(jù)進(jìn)行比較,。結(jié)果表明:最優(yōu)子集選擇算法獲取的稻穗像素分割特征參數(shù)為R,、B、H,、S,、V、GLI,、ExG等7種,,飛行高度為3m時(shí),稻穗分割效果最好,,對(duì)應(yīng)的交叉驗(yàn)證均方誤差MSE為0.0363,;構(gòu)建的稻穗分割模型可有效實(shí)現(xiàn)東北粳稻稻穗的提取,3,、6,、9m飛行高度下,拍攝圖像稻穗數(shù)量提取的均方根誤差分別為9.03,、11.21,、13.10,平均絕對(duì)百分誤差分別為10.60%,、14.88%和17.16%,。

    Abstract:

    In order to solve the problem that the ability of panicle recognition by each channel or index of digital image color space is not clear, in rice yield estimation based on UAV image, an effective panicle characteristicselecting method was developed. The field experimental data were collected from super rice achievement transformation base of Shenyang Agricultural University in 2017 and 2018, including highresolution digital image collected with UAV and the number of panicles in each sampling square in rice plots. In order to identify the panicle recognition ability of channels or index in the RGB and HSV color space, a triclassification image sample library of rice panicle, leaf and background was firstly constructed, and features extraction was performed by using the best subset selection (BSS) algorithm. The BSS extracted the seven characteristic parameters which were suitable for panicle segmentation of japonica rice in Northeast China, and used as input to panicle segmentation model based on BP neural network. The recognized panicle pixels from segmentation model were clustered by connected component analysis and the number in each sampling square was estimated, which can be compared with field measurement results for quantitively error analyzing. The results showed that the best subset selection based feature extraction performed best when the number of the feature was 7 (features were R,B,H,S,V,GLI and ExG, respectively), and the latitude was 3m. The corresponding minimum MSE of cross validation is 0.0363. The rice panicle segmentation model can effectively achieve the extraction of japonica rice panicle in Northeast China, with the average RMSE and MAPE of rice panicle number extraction in three flight altitude images taken by 3m, 6m and 9m were 9.03 and 10.60%, 11.21 and 14.88%, 13.10 and 17.16%, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

曹英麗,劉亞帝,馬殿榮,李昂,許童羽.基于最優(yōu)子集選擇的水稻穗無(wú)人機(jī)圖像分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(8):171-177,188. CAO Yingli, LIU Yadi, MA Dianrong, LI Ang, XU Tongyu. Best Subset Selection Based Rice Panicle Segmentation from UAV Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(8):171-177,188.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-08-10
  • 出版日期: 2020-08-10
文章二維碼