ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Mask R-CNN的玉米田間雜草檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFD0700500)、山東省重大科技創(chuàng)新工程項目(2019JZZY010716),、山東省農業(yè)重大應用技術創(chuàng)新項目(SD2019NJ001),、山東省重點研發(fā)計劃項目(2015GNC112004)和山東省自然科學基金項目(ZR2018MC017)


Detection Method of Corn Weed Based on Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對田間復雜環(huán)境下雜草分割精度低的問題,提出了基于Mask R-CNN的雜草檢測方法,。該方法采用殘差神經網(wǎng)絡ResNet101提取涵蓋雜草語義,、空間信息的特征圖;采用區(qū)域建議網(wǎng)絡對特征圖進行雜草與背景的初步二分類,、預選框回歸訓練,,利用非極大值抑制算法篩選出感興趣區(qū)域;采用區(qū)域特征聚集方法(RoIAlign),,取消量化操作帶來的邊框位置偏差,,并將感興趣區(qū)域(RoI)特征圖轉換為固定尺寸的特征圖;輸出模塊針對每個RoI計算分類,、回歸,、分割損失,通過訓練預測候選區(qū)域的類別,、位置,、輪廓,,實現(xiàn)雜草檢測及輪廓分割。在玉米,、雜草數(shù)據(jù)集上進行測試,,當交并比(IoU)為0.5時,本文方法均值平均精度 (mAP)為0.853,,優(yōu)于SharpMask,、DeepMask的0.816、0.795,,本文方法的單樣本耗時為280ms,,說明本文方法可快速、準確檢測分割出雜草類別,、位置和輪廓,,優(yōu)于SharpMask、DeepMask實例分割算法,。在復雜背景下對玉米,、雜草圖像進行測試,在IoU為0.5時,,本文方法mAP為0.785,,單樣本耗時為285ms,說明本文方法可實現(xiàn)復雜背景下的農田作物雜草分割,。在田間變量噴灑試驗中,,雜草識別準確率為91%,識別出雜草并準確噴霧的準確率為85%,,準確噴藥的雜草霧滴覆蓋密度為55個/cm2,,裝置對每幅圖像的平均處理時間為0.98s,滿足農藥變量噴灑的控制要求,。

    Abstract:

    Accurate detection and identification of weeds is a prerequisite for weed control. Aiming at the problem of low accuracy of weed segmentation in complex field environment, an intelligent weed detection and segmentation method based on Mask RCNN was proposed. The ResNet101 network was used to extract the feature map of weed semantic and spatial information. The characteristic map was classified by the regional suggestion network, and the preselection box regression was trained. The preselection area was screened by the nonmaximum suppression algorithm. RoIAlign was used to cancel the border position deviation caused by quantization, and the region of interest (RoI) feature map was transformed into a fixedsize feature map. The output module calculated the classification, regression and segmentation loss for each RoI, predicted the category, location and contour of the candidate area through training, and realized weed detection and contour segmentation. When IoU (intersection over union) was 0.5, the mean accuracy precision (mAP) value was 0853, which was better than that of SharpMask and DeepMask with 0.816 and 0.795, respectively. The single sample time of the three methods was 280ms, 256ms and 248ms respectively. The results showed that the method can quickly and accurately detect and segment the category, location and contour of weeds, and it can be better than SharpMask and DeepMask. When IoU was 0.5, the mAP value of the proposed method was 0.785, and the time for a single sample was 285ms, indicating that this method can realize the field operation in the complex background and meet the realtime control requirements of field pesticide variable spraying. In the field variable spraying test, the accuracy rate of identifying weeds was 91%, the accuracy rate of identifying weeds and spraying them accurately was 85%, the spray density of pesticide spray droplets was 55 per square centimetre, and the average processing time of the device was 0.98s. It can meet the control standard of pesticide variable spraying.

    參考文獻
    相似文獻
    引證文獻
引用本文

姜紅花,張傳銀,張昭,毛文華,王東,王東偉.基于Mask R-CNN的玉米田間雜草檢測方法[J].農業(yè)機械學報,2020,51(6):220-228,247. JIANG Honghua, ZHANG Chuanyin, ZHANG Zhao, MAO Wenhua, WANG Dong, WANG Dongwei. Detection Method of Corn Weed Based on Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(6):220-228,247.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-10-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-06-10
  • 出版日期:
文章二維碼