ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SfM的針葉林無(wú)人機(jī)影像樹冠分割算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市教委科研計(jì)劃項(xiàng)目(KM201710020016)


Coniferous Forest Crown Segmentation Algorithm of UAV Images Based on SfM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    利用無(wú)人機(jī)影像進(jìn)行森林資源調(diào)查具有作業(yè)快速便捷、數(shù)據(jù)分辨率較高、影像細(xì)節(jié)豐富的特點(diǎn),,可較好地識(shí)別單木,,獲取樹木位置、冠幅等信息,。但是,,厘米級(jí)的影像分辨率使基于光譜信息的傳統(tǒng)分割算法在提取樹冠時(shí)出現(xiàn)破碎化現(xiàn)象,產(chǎn)生過(guò)分割結(jié)果,。同時(shí),,在非落葉季由于無(wú)人機(jī)影像難以觀測(cè)到茂密林冠下層地形,故在地形起伏較大的林區(qū)難以實(shí)現(xiàn)基于樹木冠層高度模型(CHM)的單木分割方法,。針對(duì)上述問(wèn)題,,結(jié)合傳統(tǒng)二維圖像處理和SfM三維建模,提出了一種無(wú)需高度歸一化的無(wú)人機(jī)影像樹冠三維分割提取算法,,首先利用SfM技術(shù)從高重疊航片建立三維表面模型,,利用高程和圖像信息檢測(cè)初始樹木位置,再采取kNN自適應(yīng)鄰域分水嶺分割的方式對(duì)中心單木進(jìn)行精確的樹冠參數(shù)提取,。在北京市百花山國(guó)家級(jí)自然保護(hù)區(qū)的落葉松林地進(jìn)行了高分辨率無(wú)人機(jī)影像實(shí)驗(yàn),,采用正射影像目視解譯結(jié)果和多種基于圖像、點(diǎn)云的自動(dòng)分割算法結(jié)果進(jìn)行驗(yàn)證和評(píng)價(jià),。結(jié)果表明,,本文方法對(duì)樹木總體檢出率在91%以上,冠幅提取精度在81%以上,,優(yōu)于傳統(tǒng)的全局分水嶺方法和其他樹冠分割算法,。

    Abstract:

    Using unmanned aerial vehicle (UAV) images to inventory forest resource is a quick solution to collect high resolution data with rich imagery details. It is capable to recognize individual trees with locations and crown sizes. An intrinsic problem of high spatial resolution UAV images at centimeter levels is that the images are tended to oversegmented. In addition, UAV images captured in plant growing season can hardly observe the ground and objects beneath the canopy top, leading to infeasibility of height normalized canopy height model (CHM) based crown segmentation algorithms in forested areas with large terrain variations. To tackle these problems, a novel UAV image crown extraction approach was proposed, which was free of height normalization. Firstly, a 3D surface model was built from dense images by structure from motion technology. Initial tree locations were identified by combining height information and image contexts. An adaptive kNN neighborhood watershed algorithm was implemented to derive crown coverage of each initial tree locations. UAV images of Larch forests in Baihuashan National Nature Reserve of Beijing were used to conduct the experiment, and it was validated by visual interpretation on orthophotos and compared with a couple of images or point cloud based automatic segmentation algorithms. The results showed that the overall detection rate of individual trees was over 91%. The crown size extraction accuracy was over 81%, which outperformed the original watershed and other crown segmentation methods. It was demonstrated that the proposed method can serve to extract high accuracy tree parameters rapidly at large scales in complex terrain environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊全月,董澤宇,馬振宇,吳悠,崔琪,盧昊.基于SfM的針葉林無(wú)人機(jī)影像樹冠分割算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(6):181-190. YANG Quanyue, DONG Zeyu, MA Zhenyu, WU You, CUI Qi, LU Hao. Coniferous Forest Crown Segmentation Algorithm of UAV Images Based on SfM[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(6):181-190.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-06-10
  • 出版日期:
文章二維碼