ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于時空數(shù)據(jù)融合的縣域水稻種植面積提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41371524)、河南理工大學創(chuàng)新型科研團隊項目(T2018-4)和河南省科技攻關(guān)項目(182102110260)


Paddy Rice Planting Area Extraction in County-level Based on Spatiotemporal Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    受云雨天氣和衛(wèi)星自身回訪周期的影響,,縣域尺度水稻種植面積的提取往往難以獲取完整時間序列的高空間分辨率影像,,利用單一MODIS數(shù)據(jù)導致提取精度不高。針對上述問題以河南省優(yōu)良水稻種植區(qū)原陽縣為例,,采用增強型自適應反射率時空融合模型(Enhanced spatial and temporal adaptive reflectance fusion model,,ESTARFM),融合中高分辨率的Landsat數(shù)據(jù)和高時間分辨率的MODIS數(shù)據(jù),,獲取完整時間序列的歸一化植被指數(shù)(Normalized difference vegetation index,,NDVI)數(shù)據(jù),經(jīng)過TIMESAT濾波平滑處理后,,利用研究區(qū)內(nèi)水稻與其他地物的時序NDVI曲線,,設置合理的NDVI閾值,采用決策樹分類的方法提取水稻種植面積,。結(jié)果顯示,,總體分類精度為92.23%,Kappa系數(shù)為0.9043,。提取的水稻制圖精度為96.73%,,用戶精度為93.51%,說明ESTARFM模型能很好地融合出高空間分辨率影像,,解決數(shù)據(jù)缺失問題,,可為縣域尺度水稻種植面積提取提供參考。

    Abstract:

    The extraction of rice planting area in countylevel depends on the medium and high spatial resolution images of the complete time series. However, it is often difficult to obtain the high spatial resolution images of the complete time series due to the cloud and rain weather and the satellites own visit cycle. Thus causing the problem of low precision in rice planting area based on extraction by single MODIS data. Taking Yuanyang County, an excellent rice planting area in Henan Province, as an example, an enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) was used to fuse mid and highresolution Landsat data and hightimeresolution MODIS data to obtain the normalized difference vegetation index (NDVI) data of the complete time series. After smoothing by TIMESAT filtering, the characteristics of time series NDVI curves of rice and other features in the study area were used to set reasonable NDVI thresholds. The decision tree classification method was used to extract the rice planting area. The results showed that the overall classification accuracy was 92.23% and the Kappa coefficient was 0.9043. The producer accuracy of rice extraction was 96.73% and the user accuracy was 93.51%, which indicated that the ESTARFM model can well integrate high spatial resolution images, solve the problem of missing data, and provide an effective reference for extracting rice planting area in a countylevel.

    參考文獻
    相似文獻
    引證文獻
引用本文

牛海鵬,王占奇,肖東洋.基于時空數(shù)據(jù)融合的縣域水稻種植面積提取[J].農(nóng)業(yè)機械學報,2020,51(4):156-163. NIU Haipeng, WANG Zhanqi, XIAO Dongyang. Paddy Rice Planting Area Extraction in County-level Based on Spatiotemporal Data Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):156-163.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-04-10
  • 出版日期: 2020-04-10
文章二維碼