ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機(jī)載CCD和ALS偽波形數(shù)據(jù)的山區(qū)地表分類研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41971289)


Land Cover Classification in Mountainous Area Based on Airborne CCD Image with LiDAR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為利用機(jī)載激光雷達(dá) (Airborne LiDAR scanning,ALS),、結(jié)合高空間分辨率影像進(jìn)行土地利用分類,,提出一種利用統(tǒng)計(jì)高程分布曲線生成的ALS偽波形,結(jié)合點(diǎn)云強(qiáng)度信息和CCD影像RGB 3波段數(shù)據(jù)對(duì)山區(qū)復(fù)雜地表進(jìn)行分類的方法,,并驗(yàn)證了該方法對(duì)山區(qū)復(fù)雜地形下典型地物的分類精度,。通過安徽黃山地區(qū)研究區(qū)數(shù)據(jù)分類結(jié)果與相同區(qū)域基于光學(xué)圖像的GlobeLand30全球分類產(chǎn)品的對(duì)比,驗(yàn)證了該分類方法的可行性和適用性,。利用偽波形結(jié)合強(qiáng)度信息和RGB信息生成的分類特征曲線,,采用神經(jīng)網(wǎng)絡(luò)分類方法(ANN)將研究區(qū)內(nèi)地物分為農(nóng)田、森林,、水體,、村莊4類。結(jié)果表明,,研究區(qū)分類總體精度達(dá)到95.22%,,Kappa系數(shù)0.9192,較同一區(qū)域,、同等分辨率的光學(xué)數(shù)據(jù)分類產(chǎn)品(總體精度79.56%,,Kappa系數(shù)0.6618)精度顯著提高。

    Abstract:

    In order to fuse airborne LiDAR scanning (ALS) and high resolution image for land cover classification, modeled LiDAR waveform that based on elevation information was integrated with CCD image three band (RGB) data in complex mountainous area. Verification experiment results showed that high accuracy for several typical land cover types classification in complex mountainous area could be acquired by the method. Moreover, the classification result of study area which located in Huangshan, Anhui Province was used to compare with the GlobeLand30 classification result to verify the method. The entire coverage of study area were classified into four landcover types (farmland, forest, water and village) by characteristic curves that combined modeled waveform with intensity and RGB information through artificial neural network (ANN). The result showed that the overall accuracy of study area classification was 95.22%, and Kappa coefficient was 0.9192. Compared with GlobeLand30 classification result accuracy (overall accuracy was 79.56% with Kappa coefficient of 0.6618) in this area, the research results was improved significantly.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃侃,于強(qiáng),黃華國.基于機(jī)載CCD和ALS偽波形數(shù)據(jù)的山區(qū)地表分類研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(3):201-208. HUANG Kan, YU Qiang, HUANG Huaguo. Land Cover Classification in Mountainous Area Based on Airborne CCD Image with LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(3):201-208.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-03-10
  • 出版日期:
文章二維碼