ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

多目標(biāo)魚體對象提議檢測算法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

“十二五”國家科技支撐計(jì)劃項(xiàng)目(2015BAD17B04-5)


Multi-target Fish Detection Algorithm Based on Object Proposals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    魚的行為變化除了可以反映其自身健康狀況外,還對分析水質(zhì)變化具有重要意義,,而精確,、快速的魚體目標(biāo)檢測是行為變化分析的基礎(chǔ)。針對現(xiàn)有多目標(biāo)魚體檢測算法存在檢測定位精確度低的問題,,提出了一種簡單,、有效的多目標(biāo)魚體對象提議檢測算法,。提取魚體圖像的骨架和邊緣信息,制定新的窗口打分策略生成候選窗口,,訓(xùn)練PCA卷積核提取魚體圖像前景和背景特征,,利用支持向量機(jī)(Support vector machine,SVM)識別得到魚體目標(biāo)所在的候選窗口,運(yùn)用非極大值抑制算法剔除冗余窗口完成目標(biāo)檢測,。實(shí)驗(yàn)表明,,基于新的窗口打分策略生成的候選窗口比Edge Boxes算法得到的候選窗口具有更高的召回率,召回率最高可達(dá)96.9%,,對候選窗口的最高識別準(zhǔn)確率可達(dá)95.71%,。通過本文算法和Edge Boxes-PCANet算法得到的漏檢率、誤檢率和平均檢測時(shí)間表明,本文算法的綜合表現(xiàn)更優(yōu),,說明本文算法可以高效精確地實(shí)現(xiàn)多目標(biāo)魚體檢測,。

    Abstract:

    In addition to reflecting its own health status, fish behavioral changes are also important in analyzing water quality. The accurate and rapid fish detection is the basis for behavioral change analysis. In order to solve the problem of low precision in the existing multitarget fish detection algorithms, a simple but effective multitarget fish detection algorithm was proposed. A new window scoring strategy was created to generate proposal windows by using the skeleton and edge cues of the fish image. The principal component analysis convolution kernels were trained to extract foreground and background features of fish images. The support vector machine was used to classify proposal windows to obtain windows where fish were located, and the nonmaximum suppression algorithm was used to eliminate redundant windows to complete the object detection. Experiments showed that the proposed algorithm based on the new window scoring strategy had a higher recall rate than the Edge Boxes algorithm, and the recall rate was up to 96.9% under the fixed proposals. The highest classification accuracy of proposal windows can reach 95.71%. By analyzing the missed detection rate, false detection rate and average detection time of the algorithm and Edge Boxes-PCANet, the overall performance of the algorithm was optimal. Using this detection algorithm, the multitarget fish detection can be achieved efficiently and accurately.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫龍清,劉婷,陳帥華,吳雨寒.多目標(biāo)魚體對象提議檢測算法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(12):260-267. SUN Longqing, LIU Ting, CHEN Shuaihua, WU Yuhan. Multi-target Fish Detection Algorithm Based on Object Proposals[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):260-267.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-08-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-12-10
  • 出版日期: 2019-12-10
文章二維碼