ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Faster-RCNN的肉雞擊暈狀態(tài)檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD19806)和國(guó)家肉雞產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-42-5)


Stunning State Recognition Method of Broiler Chickens Based on Faster Region Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了準(zhǔn)確識(shí)別屠宰加工中肉雞的擊暈狀態(tài),,提出了一種基于快速區(qū)域卷積神經(jīng)網(wǎng)絡(luò)的肉雞擊暈狀態(tài)檢測(cè)方法。對(duì)輸入圖像進(jìn)行歸一化處理,通過(guò)卷積神經(jīng)網(wǎng)絡(luò)(VGG16)提取肉雞的卷積特征圖,利用區(qū)域建議網(wǎng)絡(luò)提取預(yù)測(cè)框,在卷積特征圖上采用非極大值抑制算法去除重復(fù)表述的預(yù)測(cè)框,;將所得的各預(yù)測(cè)框映射到卷積特征圖上,得到預(yù)測(cè)框在卷積特征圖上的候選區(qū)域,將其輸入感興趣區(qū)域池化層,;通過(guò)感興趣區(qū)域池化層將大小不一的候選區(qū)域進(jìn)行池化操作、得到統(tǒng)一的輸出數(shù)據(jù),,最后通過(guò)全連接層與柔性最大值分類(lèi)器,,輸出各擊暈類(lèi)別的概率和預(yù)測(cè)框的坐標(biāo),。將2319個(gè)樣本圖像按2∶1的比例隨機(jī)分為訓(xùn)練集與測(cè)試集,對(duì)模型進(jìn)行訓(xùn)練與實(shí)驗(yàn)驗(yàn)證,。結(jié)果表明,,本文建立的基于Faster-RCNN的肉雞擊暈狀態(tài)分類(lèi)模型對(duì)773個(gè)測(cè)試集肉雞樣本擊暈狀態(tài)分類(lèi)的總準(zhǔn)確率達(dá)到96.51%,對(duì)肉雞擊暈狀態(tài)的預(yù)測(cè)速度可達(dá)每小時(shí)37000只,,基本滿足肉雞屠宰生產(chǎn)線要求,。

    Abstract:

    In order to improve the accuracy of stunning state recognition of broiler chickens, a method of stunning state classification of broilers based on regional convolutional neural network (RCNN) was proposed. The following method was able to detect insufficiently appropriately and excessively stunned conditions of broilers. Initially, the image acquisition platform was utilized to collect the sample images. The data sets of collected samples were made according to the PASCAL visual object classes data set format. The total samples of 2319 images were randomly divided into training set and test set with the ratio of 6∶3. The augmented training sets were obtained through image enhancement technology. A Faster-〖JP〗RCNN was trained by using the augmented training set to detect the stunning states of broilers. The results showed that the recognition accuracy of the Faster-RCNN was 96.51% for 773 sample images in the test set. The accuracy of Faster-RCNN model was significantly higher than that of the established back propagation neural network (BP-NN) model (90.11%). The proposed model could be used to inspect the stunning state of more than 37000 broilers per hour. Deep learning technology was applied to recognize the stunning states of broilers, which can be used to automatically detect the stunning state of broilers and enhance automated slaughtering processes in the poultry industry. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

葉長(zhǎng)文,戚超,劉超,鄭小剛,王鵬,陳坤杰.基于Faster-RCNN的肉雞擊暈狀態(tài)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(12):255-259. YE Changwen, QI Chao, LIU Chao, ZHENG Xiaogang, WANG Peng, CHEN Kunjie. Stunning State Recognition Method of Broiler Chickens Based on Faster Region Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):255-259.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-04-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-12-10
  • 出版日期: 2019-12-10
文章二維碼