ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于兩種空間估算模型的喬木林地上碳密度估算
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點林業(yè)工程監(jiān)測技術(shù)示范推廣項目(\[2015\]02號)和國家林業(yè)局948項目(2015-4-32)


Estimation of Above-ground Carbon Density Prediction of Arbor Forest Based on Two Spatial Estimation Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以喬木林地上碳密度為研究對象,,基于調(diào)查獲取的喬木林地上碳密度、Landsat 8多光譜影像及DEM數(shù)據(jù),提取植被指數(shù),、紋理特征,、主成分變換因子,、纓帽變換因子和地形因子作為建模變量,,采用皮爾森相關(guān)系數(shù)法,、結(jié)合平均殘差平方和準則法對變量進行篩選,,采用協(xié)同克里格插值和地理加權(quán)回歸方法構(gòu)建喬木林地上碳密度模型,,分析對比兩種方法的估算效果。結(jié)果表明:地理加權(quán)回歸法構(gòu)建的估算模型精度(R2為0.74,,RMSE為6.84t/hm2,,MAE為5.13t/hm2,RE為0.74%)優(yōu)于協(xié)同克里格插值法(R2為0.47,,RMSE為9.72t/hm2,,MAE為7.41t/hm2,RE為0.12%),,并且較好地保留了估算變量的空間異質(zhì)性,,變異系數(shù)分別為0.5372、0.4968,,可獲得較高的估算精度,。本研究可為大尺度范圍內(nèi)的喬木林地上碳密度及其他森林參數(shù)的估算提供參考。

    Abstract:

    Based on Landsat 8 multispectral imagery and ground survey data, taking the aboveground carbon density of arbor forest as the research object, the field survey data of aboveground carbon density of arbor forest, Landsat 8 multispectral image and DEM data were used to extract vegetation indices, texture features, principal component transformation factors, cap transformation factors and topographic factors as modeling variables. Pearson correlation coefficient method combined with residual mean square criterion method was used to screen variables. CoKriging interpolation and geographic weighted regression method were used to construct aboveground carbon density of arbor forest. And the estimated effect of the two methods were compared and analyzed. The results showed that the accuracy of the estimated model constructed by the geographic weighted regression method (R2 was 0.74, RMSE was 6.84t/hm2, MAE was 5.13t/hm2, RE was 0.74%), which was superior to the CoKriging interpolation method (R2 was 0.47, RMSE was 9.72t/hm2, MAE was 7.41t/hm2, RE was 012%), and the spatial heterogeneity of the estimated variables was well preserved (CVGWR=0.5372, CVCOK=04968), the geographic weighted regression method can obtain higher estimation accuracy. The research can provide a reference for estimating the aboveground carbon density of arbor forest and other forest parameters of forest at regional or large scale.

    參考文獻
    相似文獻
    引證文獻
引用本文

王海賓,鄭冬梅,王少杰,賈筱昕,許等平.基于兩種空間估算模型的喬木林地上碳密度估算[J].農(nóng)業(yè)機械學(xué)報,2019,50(12):212-220. WANG Haibin, ZHENG Dongmei, WANG Shaojie, JIA Xiaoxin, XU Dengping. Estimation of Above-ground Carbon Density Prediction of Arbor Forest Based on Two Spatial Estimation Models[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):212-220.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-03-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-12-10
  • 出版日期: 2019-12-10
文章二維碼