ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無(wú)人機(jī)多光譜遙感的土壤含鹽量反演模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403302)、楊凌示范區(qū)科技計(jì)劃項(xiàng)目(2018GY-03)和國(guó)家自然科學(xué)基金項(xiàng)目(41502225)


Soil Salt Inversion Model Based on UAV Multispectral Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為探究無(wú)人機(jī)多光譜遙感技術(shù)快速監(jiān)測(cè)植被覆蓋下的土壤含鹽量問題,以內(nèi)蒙古河套灌區(qū)沙壕渠灌域內(nèi)4塊不同鹽分梯度的耕地為研究區(qū)域,利用無(wú)人機(jī)搭載多光譜傳感器獲取2018年8月遙感影像數(shù)據(jù),,并對(duì)0~40cm〖JP〗的土壤進(jìn)行鹽分測(cè)定,。分別引入敏感波段組,、光譜指數(shù)組,、全變量組作為模型輸入變量,,采用支持向量機(jī)(Support vector machine,,SVM),、BP神經(jīng)網(wǎng)絡(luò)(Back propagation neural network,BPNN),、隨機(jī)森林(Random forest,,RF)、多元線性回歸(Multiple linear regression, MLR)4種回歸方法,,建立基于3組輸入變量下的土壤鹽分反演模型,,并進(jìn)行精度評(píng)價(jià),比較不同輸入變量,、不同回歸方法對(duì)模型精度的影響,,評(píng)價(jià)并優(yōu)選出最佳鹽分反演模型。結(jié)果表明,,通過(guò)分析3個(gè)變量組的R2和RMSE,,光譜指數(shù)組在4種回歸方法中均取得了最佳的反演效果,敏感波段組和全變量組在不同的回歸方法中反演效果不同。4種回歸方法中,,3種機(jī)器學(xué)習(xí)算法反演精度明顯高于MLR模型,,且MLR模型中的敏感波段組和全變量組均出現(xiàn)了“過(guò)擬合”現(xiàn)象,RF算法在3種機(jī)器學(xué)習(xí)算法中表現(xiàn)最優(yōu),,SVM算法和BPNN算法在基于不同變量組的模型中表現(xiàn)也不相同,。基于光譜指數(shù)組的RF的鹽分反演模型在12個(gè)模型中取得了最佳的反演效果,,R2c和R2v分別達(dá)到了0.72和0.67,,RMSEv僅為0.112%。

    Abstract:

    Fast acquisition of soil salt content under vegetation cover is the objective need of saline soil management and utilization. Four kinds of croplands with different salinization values in Shahaoqu District of Hetao Irrigation Area were set as the study areas. The UAV equipped with a multispectral camera obtained the remote sensing image data of August, meanwhile, the soil salinity with depth of 0~40cm was tested. The sensitive band group, spectral index group and full variable group were introduced as model input variables. Four regression methods, including support vector machine (SVM), BP neural network (BPNN), random forest (RF) and multiple linear regression (MLR), were used to establish soil salinity inversion models which were based on three groups of input variables, respectively. Firstly, the model precision was evaluated, and then the effects of different input variables and different regression methods on the model precision were compared, finally the best salt inversion model was evaluated and optimized. The results indicated that comparing the R2 and RMSE of three variable groups, the spectral index group achieved the best inversion effect between the four regression model methods, and the sensitive band group and the full variable group had advantages and disadvantages in different regression algorithms. Between the four regression methods, the inversion accuracy of three machine learning regression algorithms was significantly higher than that of the MLR model. Moreover, both the sensitive band group and the full variable group in the MLR model showed the phenomenon of “overfitting”. And RF algorithm performed best between the three machine learning algorithms. Besides, SVM algorithm and BPNN algorithm performed better and worse in the model with different variable groups. The RF salt inversion model based on the spectral index group achieved the best inversion effect among the 12 models, the R2c and R2v reached 0.72 and 0.67, respectively, and the RMSEv error was only 0.112%. The research result can provide a theoretical reference for soil salinity monitoring in arid and semiarid areas.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張智韜,魏廣飛,姚志華,譚丞軒,王新濤,韓佳.基于無(wú)人機(jī)多光譜遙感的土壤含鹽量反演模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(12):151-160. ZHANG Zhitao, WEI Guangfei, YAO Zhihua, TAN Chengxuan, WANG Xintao, HAN Jia. Soil Salt Inversion Model Based on UAV Multispectral Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):151-160.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-04-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-12-10
  • 出版日期: 2019-12-10
文章二維碼