ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度信念網(wǎng)絡(luò)的多品種水稻生物量無(wú)損檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31701317),、湖北省自然科學(xué)基金項(xiàng)目(2017CFB208)和國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201810504075)


Non-destructive Measurement of Rice Biomass Based on Deep Belief Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出了基于深度信念網(wǎng)絡(luò)的多品種生殖生育期水稻生物量無(wú)損檢測(cè)方法。對(duì)在正常生長(zhǎng)及干旱脅迫兩個(gè)不同環(huán)境下的483個(gè)水稻品種,,分別于脅迫前,、脅迫后和復(fù)水后3個(gè)時(shí)間點(diǎn)進(jìn)行圖像采集。利用HSL顏色空間固定閾值分割法分割圖像,,并對(duì)處理后的圖像進(jìn)行特征提取,,共提取57個(gè)特征值。對(duì)數(shù)據(jù)進(jìn)行歸一化處理后,,構(gòu)建基于深度信念網(wǎng)絡(luò)的水稻生物量模型,,根據(jù)決定系數(shù)R2、平均相對(duì)誤差(MAPE)及相對(duì)誤差絕對(duì)值的標(biāo)準(zhǔn)差(SAPE)選擇最優(yōu)模型,,并與逐步線性回歸模型進(jìn)行比較,。結(jié)果表明,基于深度信念網(wǎng)絡(luò)的生物量測(cè)量模型性能更優(yōu),,R2為0.9299,MAPE為11.19%,,SAPE為18.36%,。本研究提供了一種精度高且適用于多品種,、不同生殖生育期、不同生長(zhǎng)環(huán)境的水稻生物量無(wú)損檢測(cè)模型,,為水稻研究提供了新的測(cè)量工具,。

    Abstract:

    Rice is one of the most significant food crops all over the world. Biomass is a key phenotypic trait in rice research. A new method for nondestructive detection of rice biomass for multiple varieties at reproductive stage based on deep belief network was proposed. RGB images of 483 different rice varieties under normal growth environment and drought stress environment were captured at three time points: before stress, after stress and after rehydration. After image acquisition, the images were segmented by using fixed threshold in HSL color space and 57 image-derived features related to rice biomass were extracted. After data normalization, a rice biomass model was built based on deep belief network. The influences of visible layer type, hidden layer number, hidden layer neuron number, learning rate, epoch number and momentum on the performance of deep belief network were tested. The best model was selected based on the coefficient of determination (R2), mean absolute percent error (MAPE) and standard deviation of absolute percent error (SAPE). The deep belief network model was also compared with the stepwise linear regression model. The results showed that the biomass measurement model based on the deep belief network performed better (R2 was 0.9299, MAPE was 11.19% and SAPE was 18.36%). The research offered a new nondestructive method for accurately measuring rice biomass for multiple varieties under different growth environments, which would provide a new tool for rice research.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

段凌鳳,潘井旭,郭子龍,劉海北,覃建祥,柯希鵬.基于深度信念網(wǎng)絡(luò)的多品種水稻生物量無(wú)損檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(11):136-143. DUAN Lingfeng, PAN Jingxu, GUO Zilong, LIU Haibei, QIN Jianxiang, KE Xipeng. Non-destructive Measurement of Rice Biomass Based on Deep Belief Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(11):136-143.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-03-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-11-10
  • 出版日期:
文章二維碼