ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于超像素特征的蘋果采摘機(jī)器人果實(shí)分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31571571,、61903288)、山東省自然科學(xué)基金項(xiàng)目(ZR2017BC013),、福建省自然科學(xué)基金項(xiàng)目(2018J01471)和江蘇省高校優(yōu)勢學(xué)科建設(shè)項(xiàng)目(PAPD)


Fruits Segmentation Method Based on Superpixel Features for Apple Harvesting Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對蘋果采摘機(jī)器人在自然環(huán)境下對著色不均勻果實(shí)的識別分割問題,,提出了基于超像素特征的蘋果采摘機(jī)器人果實(shí)分割方法。首先,,采用簡單線性迭代聚類算法將圖像分割成內(nèi)部像素顏色較為一致的若干超像素單元,;然后,,提取每個(gè)超像素的紋理和顏色特征,并采用支持向量機(jī)將超像素分為果實(shí)和背景兩個(gè)類別,;最后,,根據(jù)超像素之間的鄰接關(guān)系對分類結(jié)果進(jìn)行進(jìn)一步修正。實(shí)驗(yàn)表明,,該方法能夠?qū)Υ蟛糠殖袼貑卧M(jìn)行正確分類,,平均每幅圖像被錯(cuò)誤分類的超像素約為2.28個(gè)。與采用像素級特征的色差法和采用鄰域像素特征的果實(shí)分割方法相比,,采用超像素特征的果實(shí)分割方法具有更好的分割效果,。在進(jìn)行鄰接關(guān)系修正前,該方法圖像分割準(zhǔn)確率達(dá)0.9214,,召回率達(dá)0.8565,平均識別分割一幅圖像耗時(shí)0.6087s,,基本滿足實(shí)時(shí)性需求,。

    Abstract:

    In order to segment uneven colored apple fruits in natural environment, the fruit segmentation method based on image features extracted from superpixels was proposed for apple harvesting robot. Firstly, simple linear iterative clustering (SLIC), which was one of superpixel clustering algorithm was employed to segment original images into a set of superpixels. The color of pixels in the same superpixel was uniform relatively. Then, the color and texture features of superpixels were extracted. According to combined feature vectors, these superpixels were classified into fruit class and non-fruit class by support vector machine (SVM). Finally, the classification results were modified based on the adjacency relation of superpixels. The segmented fruits were made up of a set of superpixels in fruit class. The experiment results showed that the proposed method can classify a majority of superpixels and there were average of 2.28 superpixels in one image were classified falsely. Compared with the segmentation method based on pixel-level features and the segmentation method based on features of neighborhood pixels, the proposed method based on superpixel features had a better performance on fruit segmentation. The experiment of image segmentation with 100 images indicated that the precision and recall of proposed method can reach 0.9214 and 0.8565 respectively before modifying classification results. The running time of proposed method was 0.6087s per image.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉曉洋,趙德安,賈偉寬,阮承治,姬偉.基于超像素特征的蘋果采摘機(jī)器人果實(shí)分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(11):15-23. LIU Xiaoyang, ZHAO Dean, JIA Weikuan, RUAN Chengzhi, JI Wei. Fruits Segmentation Method Based on Superpixel Features for Apple Harvesting Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(11):15-23.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-04-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-11-10
  • 出版日期:
文章二維碼