ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合黃瓜光質(zhì)需求的設施光環(huán)境智能調(diào)控模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31671587)、陜西省重點研發(fā)計劃項目(2018TSCXL-NY-05-02),、西安市科技計劃項目(201806117YF05NC13(4))和中央高?;究蒲袠I(yè)務費專項資金項目(2452017124)


Intelligent Regulation Model of Light Environment for Facility Cucumbers with Light Quality Demand
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    設施光環(huán)境是影響作物生長發(fā)育的重要因素之一,,其包括設施光強和光質(zhì),。不同溫度下,,兩者與光合速率存在顯著的互作關系,,建立融合作物光質(zhì)需求的設施光環(huán)境智能調(diào)控模型,,是設施農(nóng)業(yè)環(huán)境調(diào)控急需解決的問題之一。本文以黃瓜為試驗材料,,設計了溫度,、光照強度、光質(zhì)比嵌套的植株凈光合速率測試試驗,,獲取了多因子耦合的試驗樣本,,并利用支持向量機建立了融合黃瓜光質(zhì)需求的光合速率預測模型。其次,,提出了基于粒子群算法的光照強度和光質(zhì)比尋優(yōu)算法,,獲取了不同溫度條件下最適合植物生長的光照強度和光質(zhì)比。最后,,基于尋優(yōu)結果,,利用偏最小二乘回歸法構建紅藍光目標值調(diào)控模型。驗證結果表明,,光合速率預測模型訓練集數(shù)據(jù)和測試集數(shù)據(jù)的擬合度分別為0.9971和0.9969,均方根誤差分別為0.3630,、0.4367μmol/(m2·s),。紅、藍光目標值調(diào)控模型均方根誤差分別為15.0878,、10.1383μmol/(m2·s),,可滿足調(diào)控模型精度要求,。其調(diào)控效果相比于傳統(tǒng)固定光質(zhì)比調(diào)控模型有明顯提升,為有效地進行設施光環(huán)境調(diào)控提供了重要依據(jù),。

    Abstract:

    The facility light environment, including facility light intensity and light quality, is an important factor affecting the growth and development of crops. There is a significant interaction between the light intensity, light quality and photosynthetic rate at different temperatures. It is one of the most urgent problems for facility agriculture to establish an intelligent regulation model of light environment for facility cucumbers with light quality demand, and effectively improve the light environment of crops. A multifactor nesting experiment was designed to obtain multidimensional sample data, and a support vector regression algorithm photosynthetic rate prediction model was constructed, which coupled temperature, light intensity, and light quality. Then, based on the particle swarm optimization algorithm, the optimal light intensities and light qualities under specific temperature conditions were obtained quickly. Finally, based on the optimization results, the intelligent regulation models of red and blue light were constructed by partial least squares regression method. As a result, the fitting degrees of training set and test set of the photosynthetic rate prediction model were 0.9971 and 0.9969, respectively, and the root mean square errors of training set and test set were 0.3630μmol/(m2·s) and 0.4367μmol/(m2·s).The root mean square errors of the intelligent regulation models of red and blue light were 15.0878μmol/(m2·s) and 10.1383μmol/(m2·s), respectively. Compared with the traditional fixed light quality models, the regulation effect of the model was significantly improved, which indicated that these models provided an important basis for the effective regulation of the light environment of facilities.

    參考文獻
    相似文獻
    引證文獻
引用本文

胡瑾,荊昊男,高攀,李遠方,張仲雄,張海輝.融合黃瓜光質(zhì)需求的設施光環(huán)境智能調(diào)控模型[J].農(nóng)業(yè)機械學報,2019,50(9):329-336. HU Jin, JING Haonan, GAO Pan, LI Yuanfang, ZHANG Zhongxiong, ZHANG Haihui. Intelligent Regulation Model of Light Environment for Facility Cucumbers with Light Quality Demand[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(9):329-336.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-09-10
  • 出版日期:
文章二維碼