ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于樹木整體圖像和集成遷移學(xué)習(xí)的樹種識(shí)別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金-浙江兩化融合聯(lián)合基金項(xiàng)目(U1809208)和浙江省自然科學(xué)基金-青山湖科技城聯(lián)合基金項(xiàng)目(LQY18C160002)


Tree Species Recognition Based on Overall Tree Image and Ensemble of Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決自然場景中擁有復(fù)雜背景的樹木整體圖像識(shí)別問題,,提出了一種基于樹木整體圖像和集成遷移學(xué)習(xí)的樹種識(shí)別方法。首先使用AlexNet、VggNet-16、Inception-V3及ResNet-50這4種在ImageNet大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型對圖像進(jìn)行特征提取,然后遷移到目標(biāo)樹種數(shù)據(jù)集上,,訓(xùn)練出4個(gè)不同的分類模型,最后通過相對多數(shù)投票法和加權(quán)平均法建立集成模型,。構(gòu)建了一個(gè)新的樹種圖像數(shù)據(jù)集——TreesNet,,基于該數(shù)據(jù)集,,設(shè)計(jì)了多類實(shí)驗(yàn),并將該方法與傳統(tǒng)的圖像識(shí)別方法進(jìn)行了分析比較,。實(shí)驗(yàn)結(jié)果表明:該方法對復(fù)雜背景下樹種圖像識(shí)別準(zhǔn)確率達(dá)到99.15%,對于樹木整體圖像識(shí)別具有較好的效果,。

    Abstract:

    The automatic classification and recognition of tree image has important practical application value. Relevant research on traditional tree species recognition includes leaf recognition, flower recognition, bark texture recognition, and wood texture recognition. In order to solve the problem of recognizing the tree image with complex background in nature scenes, a tree species recognition method based on the overall tree image and ensemble of transfer learning was proposed. Four pretraining models of AlexNet, VggNet-16, Inception-V3 and ResNet-50 were firstly used on ImageNet largescale datasets to extract features. They were then transferred to the target tree dataset to train four different classifiers. An ensemble model was finally established by the relative majority voting method and the weighted average method. A new tree image dataset called TreesNet was built and experiments were designed based on the dataset, including the comparative experiments of transfer learning and conventional methods.The experimental results showed that data augmentation can effectively solve the overfitting problem and the training model had better generalization ability and higher recognition rate. The image recognition accuracy of the tree species in the complex background with the method proposed reached 99.15%, which had a better effect on overall tree image recognition compared with the conventional classification methods of Knearest neighbor (KNN), support vector machine (SVM) and back propagation neural network (BP).

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮海林,胡明越,楊垠暉,夏凱.基于樹木整體圖像和集成遷移學(xué)習(xí)的樹種識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(8):235-242,279. FENG Hailin, HU Mingyue, YANG Yinhui, XIA Kai. Tree Species Recognition Based on Overall Tree Image and Ensemble of Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(8):235-242,279.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-12-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-08-10
  • 出版日期: 2019-08-10
文章二維碼