ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于遷移學習和Mask R-CNN的稻飛虱圖像分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(61773216)和江蘇省自然科學基金面上項目(BK20171386)


Rice Planthopper Image Classification Method Based on Transfer Learning and Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對當前稻飛虱圖像識別研究中自動化程度較低,、識別精度不高的問題,提出了一種基于遷移學習和Mask R-CNN的稻飛虱圖像分類方法,。首先,,根據稻飛虱的生物特性,,采用本團隊自主研發(fā)的野外昆蟲圖像采集裝置,,自動獲取稻田稻飛虱及其他昆蟲圖像,;采用VIA為數據集制作標簽,,將數據集分為稻飛虱和非稻飛虱兩類,并通過遷移學習在ResNet50框架上訓練數據,;最后,,基于Mask R-CNN分別對稻飛虱、非稻飛虱,、存在干擾以及存在黏連和重合的昆蟲圖像進行分類實驗,,并與傳統圖像分類算法(SVM、BP神經網絡)和Faster R-CNN算法進行對比,。實驗結果表明,,在相同樣本條件下,基于遷移學習和Mask R-CNN的稻飛虱圖像分類算法能夠快速,、有效識別稻飛虱與非稻飛虱,,平均識別精度達到0.923,本研究可為稻飛虱的防治預警提供信息支持,。

    Abstract:

    In order to deal with the problem of low automation and low recognition accuracy in the current rice planthopper image recognition research, an image classification algorithm based on transfer learning and Mask R-CNN was proposed. Firstly, according to biological characteristics of rice planthopper, the self-developed wild insect image collection device was utilized to obtain insect images automatically. Then, the dataset was divided into two categories: rice planthopper and non-rice planthopper by the image label tool VIA, and was trained in the ResNet50 framework with transfer learning. Finally, the Mask R-CNN image classification experiments were carried out based on rice planthopper images, non-rice planthopper images, insect images with disturbances and those images which were adhesive and overlapping, respectively. Moreover, experiments were compared with SVM, BP neural network, which were traditional image classification algorithms, and Faster R-CNN algorithm. Experiment results showed that the method based on transfer learning and Mask R-CNN could distinguish the rice planthopper and non-rice planthopper images effectively and the average classification accuracy reached 0.923 under the same sample conditions, which could provide information support for the prevention and early warning of rice planthoppers.

    參考文獻
    相似文獻
    引證文獻
引用本文

林相澤,朱賽華,張俊媛,劉德營.基于遷移學習和Mask R-CNN的稻飛虱圖像分類方法[J].農業(yè)機械學報,2019,50(7):201-207. LIN Xiangze, ZHU Saihua, ZHANG Junyuan, LIU Deying. Rice Planthopper Image Classification Method Based on Transfer Learning and Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(7):201-207.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-01-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-07-10
  • 出版日期:
文章二維碼