ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

挖掘數(shù)據(jù)關(guān)系的食品抽檢數(shù)據(jù)可視化分析圖研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC1601803)和國(guó)家蛋雞產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-40-K27)


Visual Analysis Graph Research of Food Sampling Data Based on Mining Data Relationship
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    食品安全數(shù)據(jù)具有多源、關(guān)聯(lián)和不確定性等特征,,數(shù)據(jù)的項(xiàng)目,、項(xiàng)目的屬性以及相鏈接數(shù)目較多,,數(shù)據(jù)內(nèi)部潛在關(guān)系不明晰,,需要研究能夠進(jìn)行關(guān)系挖掘的可視視圖,。針對(duì)食品安全領(lǐng)域數(shù)據(jù)分析的實(shí)際需求,,采用圓環(huán)布局,、節(jié)點(diǎn)鏈接布局等元素,對(duì)數(shù)據(jù)間的簡(jiǎn)單關(guān)系和層次結(jié)構(gòu)進(jìn)行展示,;結(jié)合同心圓布局,、散點(diǎn)圖、熱力圖元素和動(dòng)態(tài)過(guò)濾以及數(shù)據(jù)聚類技術(shù),,在展示數(shù)據(jù)節(jié)點(diǎn)性質(zhì)的同時(shí),,揭示數(shù)據(jù)間的潛在關(guān)聯(lián)關(guān)系,并綜合以上視圖提出了一種挖掘數(shù)據(jù)關(guān)系的可視分析圖ExploreView。應(yīng)用于國(guó)家食品藥品監(jiān)督管理總局抽檢數(shù)據(jù)集,,使用立方體隱喻組織數(shù)據(jù),,二分圖定義任務(wù)需求,完成可視編碼,,進(jìn)行數(shù)據(jù)關(guān)系探索,,為可能發(fā)生的食品安全事件提供預(yù)警,定位重點(diǎn)監(jiān)管對(duì)象,,為制定新的食品安全規(guī)章制度提供參考,。

    Abstract:

    The relationship between data can be visualized by using multiple types of images, so it is convenient for users to obtain information and relationships between data. However, when many data items, attributes and links, and the relationships between data are not clear, a visual view which is capable of relationship mining is required. For the real task requirements of domain data analysis, elements such as circle layout and node link layout were used to display simple relationships and hierarchical structures between data. What’s more, combining concentric circle layout, scatter plots, thermogram elements and dynamic filtering and data clustering techniques, a relational mining view was proposed that not only demonstrated the nature of data nodes, but also revealed the potential relationships between data. Finally, combining the above views, a visual analysis graph of the mining data relationship was presented, which was ExploreView. It was applied to the sampling data set of the Food and Drug Administration, while using cube metaphor to organize data. The bipartite graph defined task requirements before completing visual coding. It can display the basic situation of data information and dynamically interact according to the actual needs of users, and reflect the attributes, various hierarchical structures and relationships between data. As a result, the visual analysis graph was easy and efficient to operate. It can be used to provide early warning for possible food safety incidents, locate key regulatory targets, which provided reference for the development of rules, and effectively met the needs of different types of users.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊璐,張馨月,鄭麗敏.挖掘數(shù)據(jù)關(guān)系的食品抽檢數(shù)據(jù)可視化分析圖研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):272-279. YANG Lu, ZHANG Xinyue, ZHENG Limin. Visual Analysis Graph Research of Food Sampling Data Based on Mining Data Relationship[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):272-279.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-03-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期:
文章二維碼