ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于梯度提升樹算法的夏玉米葉面積指數(shù)反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFC0403203)、國家自然科學(xué)基金項目(41771315,、41301283,、41371274)和歐盟地平線2020研究與創(chuàng)新計劃項目(GA:635750)


Inversion of Summer Maize Leaf Area Index Based on Gradient Boosting Decision Tree Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了快速,、準(zhǔn)確,、大范圍獲取大田夏玉米的葉面積指數(shù)(Leaf area index,,LAI),,基于實地采集的夏玉米LAI和株高,,結(jié)合同時期的無人機多光譜影像,選擇與夏玉米LAI相關(guān)性較強的8種植被指數(shù)以及株高作為反演LAI的輸入變量,,采用梯度提升樹(Gradient boosting decision tree,,GBDT)算法建立植被指數(shù)及株高與葉面積指數(shù)之間的預(yù)測模型,并與支持向量機(Support vector machine,,SVM)和隨機森林(Random forest,,RF)算法建立的模型進(jìn)行預(yù)測精度對比。結(jié)果表明,,GBDT算法在3個樣本組中的LAI預(yù)測值與實測值R2分別為0.5710,、0.7558,、0.6441,均高于SVM算法(0.5472,、0.6791,、0.6168)和RF算法(0.5505、0.6973,、0.6295),;對應(yīng)的RMSE分別為0.0027、0.0015,、0.0016,,均低于SVM算法(0.2117、0.1523,、0.1597)和RF算法(0.2447,、0.2147、0.2080),。該研究為快速準(zhǔn)確的大田夏玉米LAI遙感監(jiān)測提供了技術(shù)和方法。

    Abstract:

    Aiming to obtain the leaf area index (LAI) of largescale summer maize in a highefficiency, nondestructive and largescale manner, and provide a technical reference for remote sensing monitoring of summer maize growth. The research was based on the fieldcollected summer maize LAI and maize height, as well as combined with multispectral data of the same period, eight vegetation indexes and height with strong correlation with summer maize LAI were selected as the input variables of gradient boosting decision tree (GBDT) algorithm model for LAI inversion. The support vector machine (SVM) model and the random forest (RF) model were taken as the reference models, which were used to compare the accuracy of prediction. The results showed that the GBDT algorithm model prediction consequence were better than the other two models among the three sample groups. R2 of prediction value and measured LAI values of the sample groups 1, 2 and 3 were 0.5710, 0.7558 and 0.6441, respectively, which were higher than those of the SVM models (0.5472, 0.6791, 0.6168) and RF models (0.5505, 0.6973, 0.6295), corresponding root mean square error (RMSE) values were 0.0027, 0.0015 and 0.0016, which were lower than those of the SVM model (0.2117, 0.1523 and 0.1597) and RF model (0.2447, 0.2147 and 0.2080). The research result provided a technical method for fast and accurate monitoring of summer maize LAI remote sensing in the field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,劉雯,韓文霆,劉全中,宋榮杰,侯貴河.基于梯度提升樹算法的夏玉米葉面積指數(shù)反演[J].農(nóng)業(yè)機械學(xué)報,2019,50(5):251-259. ZHANG Hongming, LIU Wen, HAN Wenting, LIU Quanzhong, SONG Rongjie, HOU Guihe. Inversion of Summer Maize Leaf Area Index Based on Gradient Boosting Decision Tree Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(5):251-259.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-01-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-05-10
  • 出版日期: 2019-05-10
文章二維碼