ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于FTVGG16卷積神經(jīng)網(wǎng)絡(luò)的魚類識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFE0122100)和北京市科技計(jì)劃項(xiàng)目(Z171100001517016)


Fish Identification Method Based on FTVGG16 Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對大多數(shù)應(yīng)用場景中,,大多數(shù)魚類呈不規(guī)則條狀,,魚類目標(biāo)小,,受他物遮擋和光線干擾,,且一些基于顏色、形狀,、紋理特征的傳統(tǒng)魚類識(shí)別方法在提取圖像特征方面存在計(jì)算復(fù)雜,、特征提取具有盲目和不確定性,最終導(dǎo)致識(shí)別準(zhǔn)確率低,、分類效果差等問題,,本文在分析已有的VGG16卷積神經(jīng)網(wǎng)絡(luò)良好的圖像特征提取器的基礎(chǔ)上,使用ImageNet大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的VGG16權(quán)重作為新模型的初始化權(quán)重,,通過增加批規(guī)范層(Batch normalization, BN),、池化層、Dropout層,、全連接層(Fully connected,FC),、softmax層,采用帶有約束的正則權(quán)重項(xiàng)作為模型的損失函數(shù),,并使用Adam優(yōu)化算法對模型的參數(shù)進(jìn)行更新,,汲取深度學(xué)習(xí)中遷移學(xué)習(xí)理論,構(gòu)建了FTVGG16卷積神經(jīng)網(wǎng)絡(luò)(Finetuning VGG16 convolutional neural network,FTVGG16),。測試結(jié)果表明:FTVGG16模型在很大程度上能夠克服訓(xùn)練的過擬合,,收斂速度明顯加快,訓(xùn)練時(shí)間明顯減少,,針對魚類目標(biāo)很小,、背景干擾很強(qiáng)的圖像,F(xiàn)TVGG16模型平均準(zhǔn)確率為97.66%,,對部分魚的平均識(shí)別準(zhǔn)確率達(dá)到了99.43%,。

    Abstract:

    Computer vision technology is widely applied in fish individual identification. Nevertheless, there are some problems such as small fish targets, occlusion of objects and light interference in videos and images. Some fish identification methods based on color, shape and texture also exit complicated calculations in feature extraction, such as nonmigration of features will result in low recognition accuracy and poor classification. With the help of analysis of image feature extraction of the existing VGG16 convolutional neural network model, the FTVGG16 convolutional neural network (Finetuning VGG16 convolutional neural network) was designed. As it was known, the basic deep learning tool used in this work was convolutional neural networks. The FTVGG16 convolutional neural network was composed of convolutional layers, batch normalization layers, pooling layers, Dropout layers, fully connected layers and softmax layers. The experimental results showed that the average recognition accuracy of the FTVGG16 model for fish was about 97.66%, and the average recognition rate of some fishes could reach 99.43%. It had high recognition accuracy and robustness in pictures with small fish targets and strong background interference. It could be operated through an appropriate, easytouse, and userfriendly web application for the specific case of fish identification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳英義,龔川洋,劉燁琦,方曉敏.基于FTVGG16卷積神經(jīng)網(wǎng)絡(luò)的魚類識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):223-231. CHEN Yingyi, GONG Chuanyang, LIU Yeqi, FANG Xiaomin. Fish Identification Method Based on FTVGG16 Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(5):223-231.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-10-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-05-10
  • 出版日期: 2019-05-10
文章二維碼