ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度卷積神經(jīng)網(wǎng)絡(luò)的柑橘目標(biāo)識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61573024),、北京市教育委員會(huì)科研計(jì)劃一般項(xiàng)目(KM201610009001)和北方工業(yè)大學(xué)毓優(yōu)青年人才培養(yǎng)計(jì)劃項(xiàng)目


Detection Method of Citrus Based on Deep Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)戶(hù)外自然環(huán)境,,基于深度卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)了對(duì)光照變化,、亮度不勻,、前背景相似、果實(shí)及枝葉相互遮擋,、陰影覆蓋等自然環(huán)境下典型干擾因素具有良好魯棒性的柑橘視覺(jué)識(shí)別模型。模型包括可穩(wěn)定提取自然環(huán)境下柑橘目標(biāo)視覺(jué)特征的深層卷積網(wǎng)絡(luò)結(jié)構(gòu),、可提取高層語(yǔ)義特征來(lái)獲取柑橘特征圖的深層池化結(jié)構(gòu)和基于非極大值抑制方法的柑橘目標(biāo)位置預(yù)測(cè)結(jié)構(gòu),,并基于遷移學(xué)習(xí)完成了柑橘目標(biāo)識(shí)別模型訓(xùn)練,。本文運(yùn)用多重分割的方法提高了柑橘目標(biāo)識(shí)別模型的多尺度圖像檢測(cè)能力和實(shí)時(shí)性,利用包含多種干擾因素的自然環(huán)境下柑橘目標(biāo)數(shù)據(jù)集測(cè)試,,結(jié)果表明,,柑橘識(shí)別模型對(duì)自然采摘環(huán)境下常見(jiàn)干擾因素及其疊加具有良好的魯棒性和實(shí)時(shí)性,識(shí)別平均準(zhǔn)確率均值為86.6%,,平均損失為7.7,,平均單幀圖像檢測(cè)時(shí)間為80ms。

    Abstract:

    Citrus detection and location is the foundation of citrus automated picking systems, in light of the outdoor natural picking environment, a citrus visual feature recognition model was designed based on deep convolution neural network with good robustness for typical interfering factors, such as illumination change, uneven brightness, similar foreground and background, mutual occlusion of fruit, branches and leaves, shadow coverage and so on. The model included a deep convolutional network structure which can steadily extract the visual features of citrus under natural environment, a deep pool structure which can extract highlevel semantic features to get citrus feature map, a citrus location prediction model based on nonmaximum suppression method. Moreover, the proposed model was trained by transfer learning method. Each raw image was segmented into several subimages before citrus detection to enhance the ability of multiscale object detection, and reduce the computing time of citrus detection. A testing dataset, which contained representative interference factors of natural environment, was used to test the citrus detection model, and the proposed detection model had good robustness and realtime performance. The average detection accuracy and the average loss value of the model was 86.6% and 7.7, respectively, meanwhile, the average computing time for detecting citrus from single image was 80ms. The citrus detecting model constructed by deep convolution neural network was suitable for the citrus harvesting in the natural environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

畢松,高峰,陳俊文,張潞.基于深度卷積神經(jīng)網(wǎng)絡(luò)的柑橘目標(biāo)識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):181-186. BI Song, GAO Feng, CHEN Junwen, ZHANG Lu. Detection Method of Citrus Based on Deep Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(5):181-186.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-05-10
  • 出版日期: 2019-05-10
文章二維碼