ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)勢(shì)場(chǎng)蟻群算法的移動(dòng)機(jī)器人最優(yōu)路徑規(guī)劃
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

貴州省科技計(jì)劃項(xiàng)目(黔科合LH字[2016]7004號(hào),、 黔科合LH字[2017]7081號(hào),、 黔科合LH 字[2017]7082號(hào))和貴州省教育廳項(xiàng)目(黔教合KY字[2016]254號(hào))


Ant Colony Optimization with Improved Potential Field Heuristic for Robot Path Planning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    首先,針對(duì)傳統(tǒng)人工勢(shì)場(chǎng)算法存在死鎖及局部路徑欠優(yōu)等問題,對(duì)其進(jìn)行改進(jìn)。利用障礙物檢測(cè)算法識(shí)別出有效障礙物和有效路徑中間點(diǎn),通過引力場(chǎng)和邊界條件規(guī)劃出起點(diǎn)到中間點(diǎn)的局部路徑,將中間點(diǎn)置為新的起點(diǎn)進(jìn)行反復(fù)迭代,直至起點(diǎn)與目標(biāo)點(diǎn)重合則規(guī)劃完成,。其次,針對(duì)蟻群算法容易陷入局部最優(yōu)以及收斂速度較慢等問題,,對(duì)其進(jìn)行改進(jìn),。以改進(jìn)人工勢(shì)場(chǎng)算法規(guī)劃出的路徑啟發(fā)蟻群進(jìn)行路徑搜索,從而避免算法早期由于盲目搜索而導(dǎo)致的路徑交叉及收斂速度慢等問題,,同時(shí)以收斂次數(shù)構(gòu)建負(fù)反饋通道,,使全局信息素和局部信息素的更新速率跟隨收斂次數(shù)的變化自適應(yīng)調(diào)節(jié),從而保證了算法全程中收斂速度與全局搜索能力的協(xié)調(diào)與統(tǒng)一,。最后,,在Matlab中對(duì)本文算法、基本蟻群算法以及文獻(xiàn)\[23\]所述算法分別進(jìn)行仿真實(shí)驗(yàn),。結(jié)果表明:在相同的環(huán)境模型下,,本文算法的收斂速度和搜索能力均優(yōu)于另兩種算法;在給定的簡(jiǎn)單環(huán)境模型下進(jìn)行路徑規(guī)劃時(shí),,本文算法的迭代次數(shù)為3次,,運(yùn)行時(shí)間為0.892s,最優(yōu)路徑長度為28.627m,;在給定的復(fù)雜環(huán)境模型下進(jìn)行路徑規(guī)劃時(shí),,本文算法的迭代次數(shù)為8次,運(yùn)行時(shí)間為3.376s,,最優(yōu)路徑長度為31.556m,,所尋路徑對(duì)環(huán)境的覆蓋率為73.63%,。

    Abstract:

    Addressing the problems of deadlock and poor local path in traditional artificial potential field algorithm, some improvement measures were put forward. The obstacle detection algorithm was used to identify one effective obstacle and one intermediate point. Then a local path from starting point to the intermediate point was planed according to the gravitational field and boundary conditions. Setting the intermediate point to a new starting point and repeating this process until each local path was planed one by one. Secondly, aiming at the disadvantage of slow convergence rate and easy to fall into local optimum in basic ant colony algorithm, some improvements were proposed. The result of artificial potential field algorithm was used to build heuristic information of ant colony, so as to avoid the problems of path crossover and slow convergence. At the same time, a negative feedback loop was built to adaptively adjust the renewal speed of global pheromone and local pheromone through the iteration number. Finally, simulation experiment on three different algorithms was conducted. The results showed that under the same environment model, the proposed algorithm had fewer iterations, shorter running time and better global search ability than other two algorithms. In the given simple environment model, the iteration times of the algorithm was 3, the running time was 0.892s, and the optimal path length was 28.627m. In the given complex environment model, the iteration was 8 times, the running time was 3.376s, the optimal path length was 31.556m, and the global coverage of paths was 73.63%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張強(qiáng),陳兵奎,劉小雍,劉曉宇,楊航.基于改進(jìn)勢(shì)場(chǎng)蟻群算法的移動(dòng)機(jī)器人最優(yōu)路徑規(guī)劃[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):23-32,42. ZHANG Qiang, CHEN Bingkui, LIU Xiaoyong, LIU Xiaoyu, YANG Hang. Ant Colony Optimization with Improved Potential Field Heuristic for Robot Path Planning[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(5):23-32,42.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-10-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-05-10
  • 出版日期: 2019-05-10
文章二維碼