ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于太赫茲衰減全反射技術的花生霉變程度判別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

北京市自然科學基金項目(4182017)


Discrimination of Peanut Mildew Degree Based on Terahertz Attenuated Total Reflection Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了能夠可靠、快速、便捷地檢測花生仁不同程度的霉變,研究了一種基于太赫茲時域光譜技術、分別結合誤差反向傳播(Back propagation,BP)神經網絡算法與支持向量機算法(Support vector machine,SVM)的霉變花生定性分析方法。為排除不同樣本帶來的偶然性,實驗隨機采集花育36號、魯花9號兩個花生品種進行霉變培養(yǎng)。依據花生的感官特征與前人的研究經驗,將花生分為正常、輕度霉變、中度霉變與嚴重霉變4類,采用太赫茲衰減全反射技術采集花生仁樣本光譜(波段0.3~3.6THz)。利用傅里葉變換方法對時域光譜信號進行頻域變換并進行加窗處理,然后對所得頻域信號進行光學常數吸光度與吸收系數的提取,得到樣本的光學常數信號,并進行特征波段篩選。在此基礎上分別建立BP神經網絡定性分析模型與SVM定性分析模型。實驗表明,BP神經網絡模型對花育36號花生霉變模型的預測集識別正確率為88.57%,對魯花9號花生霉變模型的預測集識別正確率為91.40%;Lib-SVM模型對兩個品種花生霉變的二分類模型、3類霉變花生的三分類模型的預測集識別正確率均為100%。應用太赫茲時域光譜技術結合SVM算法檢測霉變花生仁效果良好,具有一定的可行性。

    Abstract:

    In order to detect the different degrees of mildew of peanut kernels in an efficient, convenient and reliable way, a qualitative analysis method of mildew peanut based on back propagation(BP)neural network algorithm and support vector machine based on Terahertz (THz) time-domain spectroscopy was studied. In order to eliminate the contingency brought by different peanut samples, two peanut varieties, Huayu 36 and Luhua 9, were randomly collected for mildew culture. According to the sensory characteristics of peanut and the existing research foundation, the peanut samples were divided into four categories: normal, mild mildew, moderate mildew and severe mildew. The spectrum of peanut kernel samples (band 0.3~3.6THz) was collected by THz total reflection. The Fourier transform method was used to perform frequency domain transformation on the time domain spectral signal and window processing. Then the optical constant absorbance and absorption coefficient of the obtained frequency domain signal were extracted, and the optical constant signal of the sample was obtained and the characteristic band was screened. On this basis, BP neural network qualitative analysis model and SVM qualitative analysis model were established respectively. Experiment results showed that the BP neural network model had a prediction set recognition rate of 88.57% for the Huayu 36 peanut mold model, and the prediction set recognition rate of the Luhua 9 peanut model was 91.40%;the Lib-SVM model for two varieties of peanut mold whether or not the two-class model, the three-class model of the three types of mildew peanuts had a prediction set recognition rate of 100%. It was shown that the application of Terahertz time-domain spectroscopy combined with BP neural network algorithm and SVM algorithm had a good effect on detecting mildewed peanut kernels.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉翠玲,胡瑩,吳靜珠,邢瑞芯,王少敏.基于太赫茲衰減全反射技術的花生霉變程度判別[J].農業(yè)機械學報,2019,50(4):333-338,355. LIU Cuiling, HU Ying, WU Jingzhu, XING Ruixin, WANG Shaomin. Discrimination of Peanut Mildew Degree Based on Terahertz Attenuated Total Reflection Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):333-338,355.

復制
相關視頻

分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-04-10
  • 出版日期:
文章二維碼