ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機(jī)遙感與卷積神經(jīng)網(wǎng)絡(luò)的草原物種分類方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31660137)


Classification Method of Grassland Species Based on Unmanned Aerial Vehicle Remote Sensing and Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于無人機(jī)高光譜成像遙感系統(tǒng),在400~1000nm波段內(nèi)采集低矮、混雜生長(zhǎng)的荒漠草原退化指示物種的高光譜圖像信息。分別在退化指示物種的開花期、結(jié)實(shí)期和黃枯期進(jìn)行飛行實(shí)驗(yàn),飛行高度30m,高光譜圖像地面分辨率2.3cm。采用特征波段提取與深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)相結(jié)合的方式,提出一種荒漠草原物種水平分類的方法,結(jié)合植物物候給出了中國(guó)內(nèi)蒙古中部荒漠草原物種分類的推薦時(shí)相,總體分類精度和Kappa系數(shù)平均值分別達(dá)到94%和0.91。研究結(jié)果表明,無人機(jī)高光譜成像遙感技術(shù)及深度卷積神經(jīng)網(wǎng)絡(luò)可以較好地實(shí)現(xiàn)荒漠草原退化指示物種的分類,與基于徑向基核函數(shù)的支持向量機(jī)、基于主成分分析的深度卷積神經(jīng)網(wǎng)絡(luò)分類法相比,基于特征波段選擇的深度卷積神經(jīng)網(wǎng)絡(luò)分類法效果最好,分類精度最高。無人機(jī)搭載高光譜成像儀低空遙感和卷積神經(jīng)網(wǎng)絡(luò)法提供了一種草原物種水平分類的途徑。

    Abstract:

    Grassland degradation is an ecological problem facing the world. Investigating the species composition and species distribution of grassland is extremely important for judging the degradation process of grassland. At present, satellite remote sensing technology is difficult to meet the requirements of grassland species level classification due to the limitation of spatial resolution. Unmanned aerial vehicle (UAV) hyperspectral remote sensing technology provides images of centimeter level spatial resolution and nanoscale spectral resolution required for grassland species classification. Based on the UAV hyperspectral imaging remote sensing system, the hyperspectral image data of low and mixed growth desert grassland degradation indicator species were collected in the 400~1000nm spectral range. Flight experiments were carried out at the flowering, fruiting and yellow blight periods of the degraded indicator species. The flying height was 30m and the ground resolution of the hyperspectral image was about 2.3cm.Based on the combination of feature bands extraction and deep learning convolutional neural network (CNN), a method for classification of desert grassland species was proposed. The recommended phenological phase of species classification of desert grassland in central Inner Mongolia, China, was given in combination with plant phenology. The overall classification accuracy and Kappa coefficient reached 94% and 0.91, respectively. The results showed that the UAV hyperspectral imaging remote sensing technology and deep CNN can better classify the indicator species of desert grassland degradation. Compared with the support vector machine based on radial basis kernel function and the deep CNN based on principal component analysis, the deep CNN classification based on feature bands selection had the best effect and the highest classification accuracy. The method of CNN and the low-altitude remote sensing of UAV equipped with hyperspectral imager provided a new way to classify grassland species. The research result provided characteristic parameters for the judgment of grassland degradation succession process, and quantitative indicators for grassland ecological restoration management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊紅艷,杜健民,王圓,張燕斌,張錫鵬,康擁朝.基于無人機(jī)遙感與卷積神經(jīng)網(wǎng)絡(luò)的草原物種分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(4):188-195. YANG Hongyan, DU Jianmin, WANG Yuan, ZHANG Yanbin, ZHANG Xipeng, KANG Yongchao. Classification Method of Grassland Species Based on Unmanned Aerial Vehicle Remote Sensing and Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):188-195.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-12-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-04-10
  • 出版日期:
文章二維碼