ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于動態(tài)K閾值的蘋果葉片點云聚類與生長參數(shù)提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFD0700503)和河北省高等學校科學技術研究項目(QN2017417)


Apple Leaf Point Cloud Clustering Based on Dynamic-K-threshold and Growth Parameters Extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    根據(jù)冠層點云的分布特征,提出一種基于動態(tài)K閾值的葉片點云聚類及生長參數(shù)提取方法。首先,采用地面三維激光掃描儀獲取多站點云數(shù)據(jù)并完成配準、去噪和抽稀等預處理;然后,隨機截取整株點云中的一枝作為研究對象,融合局部凹凸性算法(LCCP)并改進K-means算法,提出基于動態(tài)K閾值的葉片點云聚類方法;最后,采用主成分分析方法(PCA)計算葉片點云法平面方向向量,并根據(jù)葉片邊界點與中心點的位置關系,計算葉寬、葉長等生長參數(shù)。試驗結果表明,與傳統(tǒng)的點云聚類方法相比,本文方法能夠在不損失枝干點云的前提下,精確地分割單葉片,保證了聚類結果的完整性和徹底性;與傳統(tǒng)的降維方法相比,本文基于真實三維空間信息提取葉片生長參數(shù)能夠較大程度提高提取準確性,為進一步評價果樹冠層光照分布及果園智能化管理提供技術支持。

    Abstract:

    Study on the three-dimensional (3D) canopy reconstruction of fruit trees plays a fundamental role in the calculation of canopy illumination distribution and the realization of automatic pruning. According to the characteristics of the leafy tree point cloud, an apple tree leaf points clustering method based on dynamic-K-threshold and a growth parameters extraction method were proposed. Firstly, terrestrial laser scanner Trimble TX8 was chosen to obtain dense point cloud of apple tree canopy from different viewpoints, and then multistation point cloud registration, outlier removal and point cloud simplification were accomplished, so as to reduce the influence of discrete points on calculation results of spatial characteristic parameters. Secondly, intercepting one branch randomly, synthesizing LCCP algorithm and improved K-means algorithm to construct the leaf points clustering method based on dynamic-K-threshold. Thirdly, as the input data, the leaf point cloud was used to construct the covariance matrix based on the PCA to calculate the fitting plane normal vector. Extracting boundary points, the parameters of width and length were obtained by calculating the position relation between boundaries and centroid. The results showed that compared with traditional clustering methods, the proposed dynamic-K-threshold method can accurately segment single leaf points without branch point losses, which ensured the integrity and thoroughness of the clustering results. The extracted parameters based on real 3D spatial information can guarantee the accuracy to a certain extent, which provided basic technical support for evaluation of illumination distribution calculation and automatic pruning.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉剛,張偉潔,郭彩玲.基于動態(tài)K閾值的蘋果葉片點云聚類與生長參數(shù)提取[J].農(nóng)業(yè)機械學報,2019,50(4):163-169,178. LIU Gang, ZHANG Weijie, GUO Cailing. Apple Leaf Point Cloud Clustering Based on Dynamic-K-threshold and Growth Parameters Extraction[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):163-169,178.

復制
相關視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-04-10
  • 出版日期:
文章二維碼