ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進SSD的果園行人實時檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(5150195)、江蘇省國際科技合作項目(BZ2017067)、江蘇省重點研發(fā)計劃項目(BE2018372)、江蘇省自然科學(xué)基金項目(BK20181443)、鎮(zhèn)江市重點研發(fā)計劃項目(NY2018001)和江蘇高校青藍工程項目


Real-time Pedestrian Detection in Orchard Based on Improved SSD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農(nóng)田障礙物的精確識別是無人農(nóng)業(yè)車輛必不可少的關(guān)鍵技術(shù)之一。針對果園環(huán)境復(fù)雜難以準(zhǔn)確檢測出障礙物信息的問題,提出了一種改進單次多重檢測器(Single shot multibox detector,SSD)深度學(xué)習(xí)目標(biāo)檢測方法,對田間障礙物中的行人進行識別。使用輕量化網(wǎng)絡(luò)MobileNetV2作為SSD模型中的基礎(chǔ)網(wǎng)絡(luò),以減少提取圖像特征過程中所花費的時間及運算量,輔助網(wǎng)絡(luò)層以反向殘差結(jié)構(gòu)結(jié)合空洞卷積作為基礎(chǔ)結(jié)構(gòu)進行位置預(yù)測,在綜合多尺度特征的同時避免下采樣操作帶來的信息損失,基于Tensorflow深度學(xué)習(xí)框架,在卡耐基梅隆大學(xué)國家機器人工程中心的果園行人檢測開放數(shù)據(jù)集上進行不同運動狀態(tài)(運動、靜止)、不同姿態(tài)(正常、非正常)和不同目標(biāo)面積(大、中、小)的田間行人識別精度和識別速度的對比試驗。試驗表明,當(dāng)IOU閥值為0.4時,改進的SSD模型田間行人檢測模型的平均準(zhǔn)確率和召回率分別達到了97.46%和91.65%,高于改進前SSD模型的96.87%和88.51%,并且參數(shù)量減少至原來的1/7,檢測速度提高了187.5%,檢測速度為62.50幀/s,模型具有較好的魯棒性,可以較好地實現(xiàn)田間環(huán)境下行人的檢測,為無人農(nóng)機的避障決策提供依據(jù)。

    Abstract:

    Reliable pedestrian detection in agriculture field is one of the key technologies for unmanned agricultural vehicles. For the complex environment in the orchard, it is difficult to accurately detect the obstacle information. To solve this problem, an improved single shot multibox detector (SSD) deep learning object detection method was proposed to detect pedestrian in the field obstacles. The lightweight network framework MobileNetV2 was used as the basic network in the SSD model to reduce the time and computational effort of extracting image features. For auxiliary layer of the SSD model, the inverse residual block combined with the dilated convolution was used as the basic structure for position prediction so that the multi-scale features can be integrated and at the same time avoiding the information loss caused by the down sampling operation. Based on the Tensorflow deep learning framework, different motion states (motion and static), different pose states (normal and unnormal) and different object scales (large, medium and small) pedestrian detection experiment in orchard were carried out on the open data set in orchard environment of the National Robotics Engineering Center of Carnegie Mellon University and the accuracy and speed of these different situations were compared. Result showed that the average precision and recall rate of the improved SSD pedestrian detection model in agriculture reached 97.46% and 91.65%, respectively, higher than 96.87% and 88.51% of the original SSD model, and the parameter quantity was decreased by seven times. The speed was accelerated by three times and the detection speed was 62.50 frames per second. The model had good robustness and could detect the pedestrian in the field environment, which could provide a basis for the obstacle avoidance of the unmanned agriculture machinery.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉慧,張禮帥,沈躍,張健,吳邊.基于改進SSD的果園行人實時檢測方法[J].農(nóng)業(yè)機械學(xué)報,2019,50(4):29-35,101. LIU Hui, ZHANG Lishuai, SHEN Yue, ZHANG Jian, WU Bian. Real-time Pedestrian Detection in Orchard Based on Improved SSD[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):29-35,101.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-12-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-04-10
  • 出版日期:
文章二維碼