ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于卷積網(wǎng)絡(luò)的沙漠腹地綠洲植物群落自動分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(U1703237)


Automatic Classification Method of Oasis Plant Community in Desert Hinterland Based on VGGNet and ResNet Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決沙漠腹地綠洲遙感圖像植物群落背景較易混淆,,僅用傳統(tǒng)的基于像元光譜信息的圖像處理方法未能充分利用其圖像特征信息,,使得提取效果不佳的問題,,針對地物類內(nèi)特征復(fù)雜,、類間邊界模糊的特點,,以連續(xù)分布的區(qū)域為研究對象,,提出了一種基于深度卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,,CNN)的高分辨率遙感影像植物群落自動分類方法,。切分無人機影像獲得規(guī)則塊圖像,,利用基于CNN的VGGNet和ResNet模型分別對塊圖像的特征進(jìn)行抽象與學(xué)習(xí),,以自動獲取更加深層抽象、更具代表性的圖像塊深層特征,,從而實現(xiàn)對植物群落分布區(qū)域的提取,,以原圖像與結(jié)果圖像疊加的形式輸出植物群落自動分類結(jié)果。采用了不同梯度的樣本數(shù)量作為訓(xùn)練樣本,,利用文中提出的方法分析了不同梯度的訓(xùn)練樣本數(shù)量對自動分類結(jié)果的影響,。實驗結(jié)果表明,訓(xùn)練樣本數(shù)量對分類精度具有明顯的影響,;提高其泛化能力后,,ResNet50模型與VGG19模型的建模精度從86.00%、83.33%分別提升到92.56%,、90.29%,;ResNet50模型分類精度為83.53%~91.83%,而VGG19模型分類精度為80.97%~89.56%,,與傳統(tǒng)的監(jiān)督分類方法比較,,深度卷積網(wǎng)絡(luò)明顯提高了分類精度。分類結(jié)果表明,,訓(xùn)練樣本數(shù)量不低于200時,,基于CNN的ResNet50模型表現(xiàn)出最佳的分類結(jié)果,。

    Abstract:

    In order to solve the problem of remote sensing image plant community background, only the traditional image processing method based on pixel spectral information fails to make full use of its image feature information, which makes the extraction effect poor. Aiming at the complex features of plant species and the blurring of interclass boundaries, the continuous distribution of regions was taken as the research object. A highresolution remote sensing image plant community automatic classification based on the convolutional neural network (CNN) was proposed. The UAV images were segmented to obtain regular block images, and the features of block images were abstracted and learned by CNNbased VGGNet and ResNet models to automatically acquire deeper abstract and more representative image block deep features. The extraction of the plant community distribution area was performed to output the automatic classification results of the plant community in the form of superposition of the original image and the result image. The number of samples with different gradients was used as the training sample. The influence of the number of training samples with different gradients on the automatic classification results was analyzed by the proposed method. The experimental results showed that the number of training samples had a significant impact on the classification accuracy. After improving its generalization ability, the modeling accuracy of ResNet50 model and VGG19 model was improved from 86.00% and 83.33% to 92.56% and 90.29%, respectively. The classification accuracy of ResNet50 model was varied from 83.53% to 91.83%, while the classification accuracy of the VGG19 model was varied from 80.97% to 89.56%. Compared with the traditional supervised classification method, the deep convolution network significantly improved the classification accuracy. Through the analysis of classification result, it was found that the number of training samples should not be less than 200, and the CNNbased ResNet50 model showed the best classification results.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

尼加提·卡斯木,師慶東,劉素紅,比拉力·依明,李浩.基于卷積網(wǎng)絡(luò)的沙漠腹地綠洲植物群落自動分類方法[J].農(nóng)業(yè)機械學(xué)報,2019,50(1):217-225. NIJAT Kasim, SHI Qingdong, LIU Suhong, BILAL Imin, LI Hao. Automatic Classification Method of Oasis Plant Community in Desert Hinterland Based on VGGNet and ResNet Models[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):217-225.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-11-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼