ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜反演的復墾區(qū)土壤重金屬含量經驗模型優(yōu)選
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0800701)和土地整治重點實驗室開放課題(2018-KF-02)


Empirical Model Optimization of Hyperspectral Inversion of Heavy Metal Content in Reclamation Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以工礦復墾區(qū)為實驗區(qū)域,,基于ASD FieldSpec 4高光譜遙感數(shù)據(jù),,結合實測的土壤重金屬含量,,利用回歸分析與特征選擇方法,,開展了基于高光譜數(shù)據(jù)的土壤重金屬含量反演研究與實驗并進行了經驗模型優(yōu)選,。通過對光譜曲線進行一階微分、對數(shù)一階微分以及對數(shù)倒數(shù)的一階微分等數(shù)學變換有效提高了光譜數(shù)據(jù)與土壤重金屬含量的相關性,。在此基礎上采用偏最小二乘回歸(Partial least squares regression, PLSR),、隨機森林回歸(Random forest regression, RFR)、支持向量機回歸(Support vector machine regression, SVMR)3種回歸分析模型開展土壤重金屬含量反演實驗,,結果表明偏最小二乘回歸(PLSR)對研究區(qū)內土壤中重金屬含量的反演最為有效,,尤其對區(qū)域內主要障礙因子鎘(Cd)元素含量的反演效果最佳,驗證集決定系數(shù)R2為0.76,?;诹W尤核惴ǎ≒article swarm optimization, PSO)、遺傳算法(Genetic algorithm, GA),、Relief F算法 3種特征選擇方法對偏最小二乘回歸(PLSR)模型進行優(yōu)化,,結果表明粒子群算法(PSO)可有效降低特征波段變量維度,進一步提高模型反演精度,,使決定系數(shù)R2由0.76提高至0.84,。綜上,基于高光譜數(shù)據(jù),,采用偏最小二乘回歸(PLSR)與粒子群算法(PSO)相結合的方法,,可有效對工礦復墾區(qū)土壤中的重金屬含量進行測度,可為復墾區(qū)土地的質量和生態(tài)指標監(jiān)測提供理論方法和技術支持,。

    Abstract:

    Taking industrial and mining reclamation land as the research object, based on the ASD FieldSpec 4 hyperspectral remote sensing data, combined with the field survey data of soil heavy metal attributes, using regression analysis and feature selection methods, the retrieval research and experiment of soil heavy metal content based on hyperspectral data were carried out, and the selection and comparison of empirical models were conducted. The correlation between soil heavy metal concentration and spectral data was effectively improved by the first derivative and logarithmic reciprocal etc. On this basis, three regression analysis models, including partial least squares regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were used to carry out the inversion experiment of heavy metal content in soil. The results showed that the partial least squares regression (PLSR) had the highest precision for the retrieval of heavy metal concentration in the reclaimed soil, especially for the cadmium (Cd) concentration, which was the main obstacle factor in the area. The determination coefficient (R2) of fit for the set was 0.76. Particle swarm optimization (PSO), genetic algorithm (GA) and Relief F were used to optimize the partial least squares regression (PLSR) model. The results indicated that PSO can effectively reduce the dimension of characteristic band variables and further improve the model inversion. And the R2 of fit was increased from 0.76 to 0.84. In conclusion, based on hyperspectral data, the combination of partial least squares regression (PLSR) and particle swarm optimization (PSO) can effectively measure the concentration of heavy metals in the soil of industrial and mining reclamation area, and it can provide theoretical methods and technical support for the detection of land quality and ecological indicators in the reclamation area.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳元鵬,張世文,羅明,鄖文聚,鞠正山,李少帥.基于高光譜反演的復墾區(qū)土壤重金屬含量經驗模型優(yōu)選[J].農業(yè)機械學報,2019,50(1):170-179. CHEN Yuanpeng, ZHANG Shiwen, LUO Ming, YUN Wenju, JU Zhengshan, LI Shaoshuai. Empirical Model Optimization of Hyperspectral Inversion of Heavy Metal Content in Reclamation Area[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):170-179.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼