ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于莖干含水率的紫薇病蟲害等級(jí)早期診斷方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0600901)、北京市科技計(jì)劃項(xiàng)目(Z161100000916012)和北京市共建項(xiàng)目


Early Diagnosis Method of Disease and Pest Level on Lagerstroemia indica Based on Stem Water Content
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了對(duì)植物病蟲害進(jìn)行早期預(yù)警,,提出一種基于莖干含水率的植物病蟲害等級(jí)早期診斷方法,。以紫薇為研究對(duì)象,,監(jiān)測(cè)復(fù)蘇萌芽期內(nèi)不同健康等級(jí)紫薇的莖干含水率,;然后,,分別通過關(guān)鍵參數(shù)和主成分分析對(duì)莖干含水率進(jìn)行特征提??;最后,結(jié)合有監(jiān)督和無監(jiān)督學(xué)習(xí)模型實(shí)現(xiàn)對(duì)紫薇病蟲害等級(jí)的早期診斷,?;诜讲罘治?,紫薇健康等級(jí)對(duì)日最小含水率、日最大含水率,、日平均含水率,、日極差含水率4個(gè)關(guān)鍵參數(shù)的影響均為極顯著?;谥鞒煞址治觯o干含水率時(shí)間序列前4個(gè)主成分的累計(jì)貢獻(xiàn)率達(dá)到99.7%,。在有監(jiān)督模型中,,以主成分特征為輸入的BP模型的性能最優(yōu),平均識(shí)別率達(dá)到98%,;在無監(jiān)督模型中,,以主成分特征為輸入的K均值模型最優(yōu),平均識(shí)別率達(dá)到92%,。因此,,莖干含水率可以作為診斷植物病蟲害等級(jí)的早期指標(biāo),主成分特征優(yōu)于關(guān)鍵參數(shù)特征,,有監(jiān)督模型優(yōu)于無監(jiān)督模型,。

    Abstract:

    A new method was proposed for early diagnosis of disease and pest level based on stem water content, which provided early warning for diseases and pests. Lagerstroemia indica seedlings with different health levels were monitored for acquiring stem water content. Then the features of stem water content were respectively extracted by two methods, including key parameter and principle component analysis. Ultimately, some supervised and unsupervised models were established for early diagnosis of disease and pest level on Lagerstroemia indica. Judging from variance analysis, the effects of health level on four key parameters (daily minimum, maximum, average and range of stem water contents) were all in very significant difference. Judging from principle component analysis, the cumulative contribution rate of the first four principal components of stem water content reached 99.7%. Among supervised models, BP model with input of PCA features performed the best and its average recognition reached 98%. Among unsupervised models, Kmeans model with input of PCA features performed the best and its average recognition rate reached 92%. Hence, stem water content can be chosen as a reliable index for early diagnosis of plant disease and pest level. The PCA features were superior to the key parameter features. The performance of supervised models was better than that of unsupervised models.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

高 超,趙 玥,趙燕東.基于莖干含水率的紫薇病蟲害等級(jí)早期診斷方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):189-194. GAO Chao, ZHAO Yue, ZHAO Yandong. Early Diagnosis Method of Disease and Pest Level on Lagerstroemia indica Based on Stem Water Content[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(11):189-194.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-09-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-11-10
  • 出版日期: 2018-11-10
文章二維碼