ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

移動(dòng)機(jī)器人RGB-D視覺SLAM算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2016ZCQ08)和國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(20170022057)


RGB-D Visual SLAM Algorithm for Mobile Robots
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)移動(dòng)機(jī)器人視覺同步定位以及地圖構(gòu)建(Simultaneous localization and mapping, SLAM)研究中存在精確度較低,、實(shí)時(shí)性較差等問題,,提出了一種用于移動(dòng)機(jī)器人的RGB-D視覺SLAM算法,。首先利用定向二進(jìn)制簡(jiǎn)單描述符(Oriented fast and rotated brief, ORB)算法提取RGB圖像的特征點(diǎn),,通過基于快速近似最鄰近(Fast library for approximate nearest neighbors, FLANN)的雙向鄰近(K-nearest neighbor, KNN)特征匹配方法得到匹配點(diǎn)對(duì)集合,利用改進(jìn)后的隨機(jī)抽樣一致性(Re-estimate random sample consensus, RE-RANSAC) 算法剔除誤匹配點(diǎn),,估計(jì)得到相鄰圖像間的6D運(yùn)動(dòng)變換模型,,然后利用廣義迭代最近點(diǎn)(Generalized iterative closest point, GICP)算法得到優(yōu)化后的運(yùn)動(dòng)變換模型,進(jìn)而求解得到相機(jī)位姿,。為提高定位精度,,引入隨機(jī)閉環(huán)檢測(cè)環(huán)節(jié),減少了機(jī)器人定位過程中的累積誤差,,并采用全局圖優(yōu)化(General graph optimization, G2O)方法對(duì)相機(jī)位姿圖進(jìn)行優(yōu)化,,得到全局最優(yōu)相機(jī)位姿和相機(jī)運(yùn)動(dòng)軌跡;最終通過點(diǎn)云拼接生成全局彩色稠密點(diǎn)云地圖,。針對(duì)所測(cè)試的FR1數(shù)據(jù)集,,本文算法的最小定位誤差為0.011m,平均定位誤差為0.0245m,,每幀數(shù)據(jù)平均處理時(shí)間為0.032s,,滿足移動(dòng)機(jī)器人快速定位建圖的需求。

    Abstract:

    In view of the problems of low accuracy and poor real-time in the research of visual simultaneous localization and mapping, a RGB-D vision SLAM algorithm for indoor mobile robots was proposed. Firstly, feature points of RGB image were extracted by using oriented fast and rotated brief (ORB) algorithm, and matching point pair set was obtained by the bidirectional K-nearest neighbor (KNN) feature matching method based on fast library for approximate nearest neighbors (FLANN). The improved random sampling consistency algorithm (RE-RANSAC) was used to eliminate false matching points and estimate the 6D motion transformation model between two adjacent images, as the initial transformation model of GICP algorithm. The generalized iterative closest point algorithm (GICP) was used to obtain the optimized motion transformation model, and then the pose diagram was obtained. In order to improve the positioning accuracy, a random closed-loop detection link was introduced to reduce the cumulative error in the robot positioning process, and the pose diagram was optimized by using the general graph optimization (G2O) method to obtain the global optimal pose diagram and camera motion trajectory, and the global color dense point cloud map was finally generated. For the tested FR1 data sets, the minimum positioning error of the algorithm was 0.011m, the average positioning error was 0.0245m, and the average processing time of each frame was 0.032s, which can meet the requirement of rapid positioning and mapping of mobile robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳劭,郭宇翔,高天嘯,宮清源,張軍國(guó).移動(dòng)機(jī)器人RGB-D視覺SLAM算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(10):38-45. CHEN Shao, GUO Yuxiang, GAO Tianxiao, GONG Qingyuan, ZHANG Junguo. RGB-D Visual SLAM Algorithm for Mobile Robots[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(10):38-45.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-05-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-10-10
  • 出版日期:
文章二維碼