ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于FCM及HSV模型的方格蔟黃斑繭檢測(cè)與剔除技術(shù)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)(CARS-18-ZJ0402)、山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(SDAIT-18-06)和山東省“雙一流”獎(jiǎng)補(bǔ)資金項(xiàng)目(564047)


Detection and Elimination of Yellow Spotted Cocoon in Mountage Based on FCM Algorithm and HSV Color Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    桑蠶業(yè)繅絲前需要對(duì)蠶繭進(jìn)行檢測(cè)分類(lèi),,剔除黃斑繭等下繭對(duì)于提高繅絲質(zhì)量非常關(guān)鍵,。我國(guó)蠶蟲(chóng)上蔟多用紙板方格蔟,方格蔟在使用過(guò)程由于擠壓,、受潮等原因極易變形,,另外,營(yíng)繭方格蔟一般覆蓋一層繭衣,,使自動(dòng)檢測(cè)方格蔟蠶繭質(zhì)量并準(zhǔn)確剔除黃斑繭等下繭極其困難,。采用基于模糊C均值聚類(lèi)(FCM)及HSV模型的黃斑繭檢測(cè)算法,在采繭過(guò)程中直接對(duì)蠶繭進(jìn)行圖像分割和黃斑繭檢測(cè),,使用基于機(jī)器視覺(jué)的直角坐標(biāo)式自動(dòng)采繭機(jī)對(duì)黃斑繭進(jìn)行定位剔除試驗(yàn),。首先對(duì)方格蔟正面原始圖像使用FCM分割,消除蠶繭繭衣及方格蔟邊框,,得到蠶繭二值圖像,;對(duì)FCM分割后的蠶繭二值圖像與方格蔟原始圖像進(jìn)行掩膜,實(shí)現(xiàn)對(duì)方格蔟內(nèi)單個(gè)蠶繭的提??;對(duì)提取到的單個(gè)蠶繭,根據(jù)HSV空間累積顏色直方圖的黃斑顏色H分量的比例是否達(dá)到黃斑繭的定義閾值,,逐個(gè)進(jìn)行黃斑繭判斷,;然后,,對(duì)檢測(cè)到的黃斑繭,保存其連通域中心坐標(biāo)作為其圖像位置坐標(biāo),,經(jīng)過(guò)視覺(jué)測(cè)量確定蠶繭在笛卡爾空間中的世界坐標(biāo),。使用基于機(jī)器視覺(jué)的直角坐標(biāo)式方格蔟自動(dòng)采繭機(jī),對(duì)方格蔟黃斑繭進(jìn)行定位剔除試驗(yàn),,該算法對(duì)方格蔟內(nèi)黃斑繭的平均檢測(cè)正確率為81.2%,,黃斑繭坐標(biāo)最大定位偏差為3.0mm,對(duì)單張方格蔟圖像進(jìn)行分割和黃斑繭檢測(cè)的平均時(shí)長(zhǎng)為1.271s,,對(duì)繭衣附有桑葉?;蛩樯H~的蠶繭沒(méi)有誤檢測(cè),但對(duì)黃斑位于邊緣處的蠶繭檢測(cè)效果不好,。

    Abstract:

    In sericulture, cocoons must be detected and classified before silk reeling is performed. It is important for improving the quality of silk to eliminate the yellow spotted cocoons. A large number of checker cocooning are used for silkworm mounting cocooning frames. It is difficult to detect the yellow spotted cocoons because of the checker cocooning frames’ reshape and outer floss. To solve the problem, the algorithm based on FCM and HSV color model was used to detect and eliminate the yellow spotted cocoons in the cocoons harvested process. Firstly, FCM segmentation was applied to the original image of the checker cocooning frame to eliminate the outer floss and the frame. The binary image of the cocoon was obtained by FCM segmentation and threshold segmentation. The original image was masked with the binary image which was obtained by FCM segmentation. And the individual cocoon was extracted through the masked operation. According to the proportion of specific color components in the color histogram which was gotten by accumulating color of HSV, the yellow spotted cocoon was judged one by one. The center point coordinates of the yellow spotted cocoons’ regions were got by the connected components calibration, and were mapped into the world coordinates through the equation that image coordinates to world coordinates to get the cocoons positions in the Cartesian space. Finally, the yellow spotted cocoons were eliminated by automatic harvesting machine. According to the result of experiment, the correct ratio of cocoon detection was 81.2%, the location accuracy was 3.0mm, the average process time of one mountage image was 1.271s. The cocoons which out floss with leaf stalks or crushed leaves could be detected errorlessly, but the algorithm had no effect on detection the cocoons with stained point in the edge.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉莫塵,許榮浩,閆筱,閆銀發(fā),李法德,劉雙喜.基于FCM及HSV模型的方格蔟黃斑繭檢測(cè)與剔除技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(7):31-38. LIU Mochen, XU Ronghao, YAN Xiao, YAN Yinfa, LI Fade, LIU Shuangxi. Detection and Elimination of Yellow Spotted Cocoon in Mountage Based on FCM Algorithm and HSV Color Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(7):31-38.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-03-07
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2018-07-10
  • 出版日期:
文章二維碼