ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SVM的灌區(qū)無(wú)人機(jī)影像渠系提取
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41771315,、41301283,、41371274)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)和歐盟地平線2020研究與創(chuàng)新計(jì)劃項(xiàng)目(GA:635750)


Extraction of Irrigation Networks of UAV Orthophotos Based on SVM Classification Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    灌區(qū)渠系制圖配合現(xiàn)代節(jié)水灌溉技術(shù),,對(duì)合理配水、安全輸水有著重大影響,。但目前普遍使用的灌區(qū)遙感影像分辨率不高,,給渠系提取與制圖帶來(lái)一定的困難。本文將無(wú)人機(jī)采集的高精度正射影像,、高程,、坡度數(shù)據(jù)相結(jié)合作為數(shù)據(jù)源,提取出具有顯著描述能力的渠系特征來(lái)構(gòu)建訓(xùn)練樣本集,,基于支持向量機(jī)的分類方法對(duì)目標(biāo)渠系進(jìn)行分割提取,,再通過(guò)后處理對(duì)提取結(jié)果進(jìn)行去噪、連接和優(yōu)化,,實(shí)現(xiàn)了無(wú)人機(jī)高分辨率多數(shù)據(jù)源的渠系提取,。結(jié)果表明,該渠系提取方法可以識(shí)別提取灌區(qū)中的支渠,、斗渠和部分農(nóng)渠,,渠系連續(xù)性良好,與手繪渠系對(duì)比,,精度最高可達(dá)89.35%,。其中提取誤差主要由級(jí)別較低的渠系中渠床淤泥沉積導(dǎo)致影像、地形特征不明顯造成,。

    Abstract:

    Irrigation district canal system with modern water-saving irrigation technology has a significant impact on rational distribution of water and the safety of water supply. However,,the resolution of the commonly used remote sensing image of irrigation area is not high, which brings difficulties to the extraction and mapping of the drainage system. The high-precision ortho-image, elevation and slope data collected by UAVs were taken together as data sources. Features with strong canal discriminative ability were obtained from them to construct a training set. The classification system was trained via the support vector machine to segment canals from images. Then, the extraction results were denoised, connected and optimized, and the canal extraction of UAV high resolution multi-source data was realized. The results showed that the canal extraction method can identify the branch canal in the irrigation area. Meanwhile,competitive performance was achieved in the continuity of the canal, the bucket and the part of canal system. The precision was up to 89.35%. The extraction error was mainly caused by the deposition of canopy mud in the lower canal system which made the terrain features not easy to be recognized. In conclusion, the method proposed provided a new solution for the extraction of irrigation and drainage canal and can be applied to the actual agricultural production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,任強(qiáng),韓文霆,楊江濤,楊勤科,張炯.基于SVM的灌區(qū)無(wú)人機(jī)影像渠系提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):141-148. ZHANG Hongming, REN Qiang, HAN Wenting, YANG Jiangtao, YANG Qinke, ZHANG Jiong. Extraction of Irrigation Networks of UAV Orthophotos Based on SVM Classification Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(2):141-148.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-11-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-02-10
  • 出版日期:
文章二維碼