ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的大棚及地膜農(nóng)田無(wú)人機(jī)航拍監(jiān)測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金交叉創(chuàng)新項(xiàng)目(2017JC02)和國(guó)家自然科學(xué)基金項(xiàng)目(61402038)


Monitoring Method for UAV Image of Greenhouse and Plastic-mulched Landcover Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著精準(zhǔn)農(nóng)業(yè)技術(shù)的發(fā)展,,快速獲取大棚和地膜農(nóng)田面積及地理分布的需求越來(lái)越大,,但沿用面向衛(wèi)星遙感影像的解譯方法處理無(wú)人機(jī)航拍影像,,存在特征選擇復(fù)雜,、識(shí)別精度較低,、處理時(shí)間長(zhǎng)等問(wèn)題,?;诖?,本文提出一種基于深度學(xué)習(xí)的大棚及地膜農(nóng)田無(wú)人機(jī)航拍監(jiān)測(cè)方法,,即采用六旋翼無(wú)人機(jī)搭載索尼NEX-5k相機(jī)進(jìn)行航拍作業(yè),對(duì)采集到的558幅赤峰市王爺府鎮(zhèn)地區(qū)的無(wú)人機(jī)航片進(jìn)行正射校正與拼接,,構(gòu)建全卷積神經(jīng)網(wǎng)絡(luò)(Fully convolutional network, FCN),,通過(guò)多尺度融合的方法實(shí)現(xiàn)了FCN的5個(gè)變種模型:FCN-32s、FCN-16s,、FCN-8s,、FCN-4s、FCN-2s,,使用帶動(dòng)量的隨機(jī)梯度下降算法端到端訓(xùn)練模型,,自動(dòng)提取并分類影像特征。FCN模型與ENVI商用遙感軟件的基于像素的分類方法,、eCognition軟件的面向?qū)ο蟮姆诸惙椒▽?duì)比后表明:FCN-4s模型為識(shí)別大棚和地膜農(nóng)田的最佳模型,,對(duì)于測(cè)試區(qū)域的平均整體正確率為97%,而基于像素的分類方法平均整體正確率為74.1%,,面向?qū)ο蟮姆诸惙椒ㄆ骄w正確率為81.78%,。FCN-4s模型平均運(yùn)行時(shí)間為16.85s,是基于像素的分類方法運(yùn)行時(shí)間的0.06%,,是面向?qū)ο蟮姆诸惙椒ㄟ\(yùn)行時(shí)間的5.62%,。本方法可快速準(zhǔn)確獲取大棚和地膜農(nóng)田的地理分布及面積,滿足設(shè)施農(nóng)業(yè)對(duì)無(wú)人機(jī)航拍監(jiān)測(cè)的需求,。

    Abstract:

    With the development of precision agriculture, the demand on rapidly obtaining the area and geographical distribution of greenhouses, plastic-mulched landcover is increased. However, using the interpretation method for satellite remote sensing images to process unmanned aerial vehicle (UAV) images is not ideal, due to the complex feature extraction, low recognition accuracy, long processing time and so on. To circumvent this issue, a UAV aerial monitoring method was proposed based on deep learning for greenhouses and plastic-mulched landcover monitoring. The six-rotor UAV equipped with Sony NEX-5k camera captured aerial photographs in the Wangyefu town of Chifeng City. The 558 UAV images were orthographically corrected and stitched. The five fully convolutional network (FCN) variants, i.e. the FCN-32s, FCN-16s, FCN-8s, FCN-4s and FCN-2s models were built by multi-scale fusion. The modes were trained end-to-end by the stochastic gradient descent algorithm with momentum. The features were extracted and learned from the photographs automatically. The FCN models were compared with two economic softwares, i.e. the pixel-based classification method of ENVI and the object-oriented classification method of eCognition. The results showed that the FCN-4s was the best model on the identification of greenhouses and plastic-mulched landcover. The average overall accuracy of test area was 97%, while that of pixel-based classification method and the object-oriented classification method was 74.1% and 81.78%, respectively. The average runtime of the FCN-4s was 16.85s, which was 0.06% and 5.62% of those of pixel-based classification method and the object-oriented classification method, respectively. The proposed method demonstrated high recognition accuracy and fast speed, which can meet the demand on UAV monitoring of facilities agriculture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫鈺,韓京冶,陳志泊,史明昌,付紅萍,楊猛.基于深度學(xué)習(xí)的大棚及地膜農(nóng)田無(wú)人機(jī)航拍監(jiān)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):133-140. SUN Yu, HAN Jingye, CHEN Zhibo, SHI Mingchang, FU Hongping, YANG Meng. Monitoring Method for UAV Image of Greenhouse and Plastic-mulched Landcover Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(2):133-140.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-02-10
  • 出版日期:
文章二維碼