ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

利用候選區(qū)域的多模型跟蹤算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61472442)和航空科學(xué)基金項(xiàng)目(20155596024)


Multiple Model Tracking Algorithm Using Object Proposals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    跟蹤過程中發(fā)生的尺度變化,、形變、遮擋是導(dǎo)致模型漂移的重要原因,。為了克服模型漂移對魯棒跟蹤的影響,,本文提出了一種利用多判別式模型和候選區(qū)域的跟蹤算法。首先,,該算法采用候選區(qū)域替代傳統(tǒng)的滑動采樣,,適應(yīng)跟蹤過程中目標(biāo)的位移和尺度變化。接下來,,為了提高目標(biāo)的表征能力,,先用預(yù)訓(xùn)練網(wǎng)絡(luò)提取整幅圖片的深度特征,再通過感興趣區(qū)域采樣層(ROI pooling layer)快速提取每一個候選區(qū)域的深度特征,,進(jìn)一步提高跟蹤算法的魯棒性,。最后,運(yùn)用多模型選擇機(jī)制進(jìn)行回撤過去錯誤的模型更新,,并通過調(diào)整搜索區(qū)域?qū)崿F(xiàn)對目標(biāo)的重檢測,,有效抑制了模型漂移對魯棒跟蹤的影響。實(shí)驗(yàn)中,,本文算法與相關(guān)算法在OTB 2013數(shù)據(jù)庫和UAV 20L數(shù)據(jù)庫上進(jìn)行了對比,。結(jié)果表明,本文算法在精確度與成功率上均取得了最優(yōu)性能,,并能有效抑制模型漂移對魯棒跟蹤的影響,。

    Abstract:

    The scale variation, deformation and occlusion are the important reasons for model drift. In order to overcome the effect of model drift on robust tracking, a multiple model tracking algorithm based on object proposals was proposed. Firstly, as object proposals can reflect the general object material properties, the proposed tracker replaced traditional sliding sampling with object proposals to adapt the displacement and scale variation in the tracking process. And then, in order to enhance the object representation ability, the deep convolutional feature was used to characterize the target. During this process, although the previous size of object proposals may be different, the deep convolutional feature of each object proposal can be extracted quickly by a ROI pooling layer, and each object proposals feature had the same length, which can help to model training and further improve the robustness of the tracker. Lastly, the multi-models selection mechanism was used to undo past bad model updates by selecting the best tracking model, and adjusting the searching area can achieve object re-detection. These measures can inhibit the effect of model drift on robust tracking. In order to verify the superiority of the algorithm, the OTB 2013 benchmark and UAV 20L benchmark, and some classic contrast algorithms recently were used to evaluate the proposed tracker. The results showed that the proposed tracker achieved the best performance on precision and success rate, and the effect of model drift on robust tracking can be effectively suppressed.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

畢篤彥,張園強(qiáng),查宇飛,庫濤,吳敏,唐書娟.利用候選區(qū)域的多模型跟蹤算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):35-42. BI Duyan, ZHANG Yuanqiang, ZHA Yufei, KU Tao, WU Min, TANG Shujuan. Multiple Model Tracking Algorithm Using Object Proposals[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(11):35-42.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-11-10
  • 出版日期:
文章二維碼