ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于EEMD的水資源監(jiān)測(cè)數(shù)據(jù)異常值檢測(cè)與校正
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金委員會(huì)-廣東聯(lián)合基金項(xiàng)目(U1501253)和廣東省省級(jí)科技計(jì)劃項(xiàng)目(2016B010127005)


Outlier Detection and Correction for Water Resources Monitoring Data Based on EEMD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出利用中位數(shù)法與集成經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)相結(jié)合的方法對(duì)時(shí)間序列數(shù)據(jù)的異常值進(jìn)行檢測(cè),首先通過(guò)中位數(shù)法對(duì)明顯異常的數(shù)據(jù)進(jìn)行初步篩選,,再用EEMD對(duì)剩余數(shù)據(jù)進(jìn)行分解,,通過(guò)疊加低頻分量可以擬合出大多數(shù)數(shù)據(jù)的整體變化趨勢(shì),,而不受異常值的影響,,從而根據(jù)偏差比率可有效檢測(cè)出異常值,。然后根據(jù)異常值檢測(cè)后的時(shí)間序列數(shù)據(jù)的凹凸性變化趨勢(shì),,用分段曲線擬合對(duì)異常值校正,。最后,以H1自來(lái)水廠的日取水量數(shù)據(jù)為例進(jìn)行實(shí)證分析,。結(jié)果表明:提出的中位數(shù)法與EEMD相結(jié)合的方法能夠有效地檢測(cè)異常值,,校正后得到的數(shù)據(jù)能夠真實(shí)反映該水廠取用水情況,可為后續(xù)分析提供更加真實(shí)可靠的數(shù)據(jù),。

    Abstract:

    In order to improve the availability and accuracy of online monitoring data of water resources, it is very important to detect and correct the outliers of monitoring data. The water resources monitoring data are non-linear and non-stationary time series data, the outlier detection method of the conventional time series did not take into account the convexity and concavity of time series. A combining median and ensemble empirical mode decomposition (EEMD) method was presented for outlier detection. Firstly, the outliers were preliminarily detected by the median method. And then the remaining data were decomposed by EEMD. The overall trend of most of the data can be fitted by superimposing the low-frequency components, but not affected by outlier, and the outlier can be detected effectively according to the deviation rate. Then, according to change of convexity and concavity of time series data after outlier detection, the method of piecewise curve fitting was used to correct the outliers. Finally, taking the daily water intake data of H1 waterworks as an example, the results showed that the method of combining median and EEMD can detect outliers effectively. The data obtained after correction can truly reflect the actual situation of water intake of waterworks. It can also provide more reliable data for subsequent analysis.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

方海泉,薛惠鋒,蔣云鐘,周鐵軍,萬(wàn)毅,王海寧.基于EEMD的水資源監(jiān)測(cè)數(shù)據(jù)異常值檢測(cè)與校正[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):257-263. FANG Haiquan, XUE Huifeng, JIANG Yunzhong, ZHOU Tiejun, WAN Yi, WANG Haining. Outlier Detection and Correction for Water Resources Monitoring Data Based on EEMD[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):257-263.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-02-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-09-10
  • 出版日期:
文章二維碼