ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

牦牛與黃牛肌肉差異蛋白質(zhì)組及生物信息學(xué)分析
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31460402)和國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)(肉牛牦牛)技術(shù)體系項(xiàng)目(CARS-38)


Proteomics and Bioinformatics Analyses of Differentially Expressed Proteins in Yak and Beef Cattle Muscle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了建立和優(yōu)化牦牛肌肉組織蛋白質(zhì)雙向電泳(2DE)體系,結(jié)合生物信息學(xué)方法進(jìn)行牦牛,、黃牛差異蛋白質(zhì)通路分析,。以牦牛背最長(zhǎng)肌為實(shí)驗(yàn)材料,,對(duì)不同裂解液成分,、等電聚焦程序,、染色方法進(jìn)行研究,,在最優(yōu)2DE體系參數(shù)下,,對(duì)比分析牦牛、黃牛差異倍數(shù)大于2倍且達(dá)到顯著水平(P<0.05)的19個(gè)蛋白質(zhì),,通過(guò)基質(zhì)輔助激光解吸/電離飛行時(shí)間(MALDI-TOF/TOF)質(zhì)譜進(jìn)行鑒定,,并對(duì)鑒定結(jié)果進(jìn)行了基因本體(GO)注釋、京都基因與基因組百科全書(shū)(KEGG)通路分析,。結(jié)果表明,,裂解液II、漸進(jìn)式快速升壓程序,、改良的考染法獲得的蛋白點(diǎn)匹配率高,,牦牛、黃牛2DE圖譜蛋白點(diǎn)平均個(gè)數(shù)分別為479個(gè)和553個(gè),。通過(guò)比較牦牛和黃牛背最長(zhǎng)肌中差異蛋白質(zhì)可知,,所得到的差異蛋白質(zhì)按照功能可分為代謝酶、結(jié)構(gòu)蛋白和應(yīng)激蛋白3大類,。通過(guò)KEGG分析可知,,牦牛、黃牛差異蛋白質(zhì)主要集中在細(xì)胞代謝過(guò)程,、碳水化合物代謝通路,、遺傳信息通路和能量代謝通路中,研究結(jié)果可為解釋牦牛和黃牛肌肉生物學(xué)特性和肉品質(zhì)差異提供理論依據(jù),。

    Abstract:

    Yak (Bos grunniens) lives at plateau area of more than 3500 altitude meter, in this case, yak still maintains normal physiological activity. Besides, yak meat is rich in protein and low in fat, which does not contain anabolic steroids. Proteomics research with bioinformatics approach combined with the established two dimensional electrophoresis (2DE) platforms was studied by comparing yak with beef cattle muscle. Aiming to illustrate the causes and pathway of different meat qualities in yak and beef cattle, establish the optimal 2DE system and analyze protein bioinformatics pathways, different lysis buffer components, isoelectric focusing procedures and staining methods were studied by using longissimus dorsi muscle of yak. Proteomic profiling by 2DE and mass spectrometry identified 19 proteins that were differentially expressed in longissimus dorsi muscle of yak and beef cattle. Then the identified proteins were analyzed by gene ontology (GO) annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway. Results showed that the optimal protein extraction methods were lysis buffer component II, progressive fast boosting program and improved coomassie blue staining method. And protein spots in yak and beef cattle were 553 and 479, respectively. Totally 19 protein spots exhibiting a teo fold or more intensity difference in the meantime associated with 5% statistical significance (P<0.05) were considered differentially abundant. The differentially abundant proteins between yak and beef cattle could be divided into three main functional categories: metabolism proteins, structure proteins and stress proteins. The method of GO annotation provided three detailed and structured terms that included cellular component, molecular function and biological process. The differentially expressed proteins in yak and beef cattle muscle were concentrated in cellular processes, carbohydrate metabolism, genetic information processing and energy metabolism pathways by KEGG pathway analysis. In conclusion, the research result demonstrated the functions of identified proteins and provided a more detailed molecular view of the processes behind meat quality in yak and beef cattle.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

左惠心,韓玲,余群力,??颂m,趙索南,孔祥穎.牦牛與黃牛肌肉差異蛋白質(zhì)組及生物信息學(xué)分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):313-320. ZUO Huixin, HAN Ling, YU Qunli, NIU Kelan, ZHAO Suonan, KONG Xiangying. Proteomics and Bioinformatics Analyses of Differentially Expressed Proteins in Yak and Beef Cattle Muscle[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):313-320.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-02-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-04-10
  • 出版日期:
文章二維碼