ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜成像的蘋果品種快速鑒別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

陜西省農(nóng)業(yè)科技創(chuàng)新與攻關(guān)項(xiàng)目(2015NY023)和農(nóng)業(yè)部現(xiàn)代蘋果產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-28)


Rapid Identification of Apple Varieties Based on Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以“喬納金”蘋果,“紅富士”蘋果和“秦冠”蘋果共90個(gè)試驗(yàn)樣本為試材分別采集865~1711nm的近紅外波段高光譜圖像,,選取蘋果圖像感興趣區(qū)域(ROI),,以分辨率2.8nm提取其平均反射光譜數(shù)據(jù),,分別利用K近鄰法(KNN)和徑向基核函數(shù)支持向量機(jī)(RBF-SVM)進(jìn)行品種判別,,5折交叉檢驗(yàn),。結(jié)果表明,,3種蘋果的近紅外高光譜圖像均在波長(zhǎng)941~1602nm之間變得清晰,,該區(qū)域200個(gè)波段下的平均反射光譜數(shù)據(jù)經(jīng)KNN法中的10種距離算法評(píng)判,,當(dāng)K取值3和5時(shí),切比雪夫距離,、歐幾里得距離和明可夫斯基距離3種距離算法的識(shí)別正確率均達(dá)到100%,;SVM-RBF核函數(shù)模型中,γ取值為2-8~1的范圍內(nèi)識(shí)別正確率均在92%以上,,當(dāng)γ取值2-5,,C取值為16和32時(shí),識(shí)別正確率最高,,為96.67%,。故利用近紅外高光譜圖像技術(shù)結(jié)合KNN計(jì)算對(duì)蘋果品種進(jìn)行快速鑒別是優(yōu)異和可靠的方案。

    Abstract:

    In order to achieve rapid non-destructive identification of apple varieties, the methodology of near-infrared hyperspectral imaging on identification of apple varieties was investigated. Near infrared hyperspectral images with wavelength from 865~1711nm of total 90 sample fruits were collected from three different varieties (“Jonagold”, “Fuji” and “Qinguan” apples), and hyperspectral image area of the apple was selected as a region of interest (ROI). Reflection intensity data of the average reflex spectrum were extracted with resolution rate of 2.8nm, then they were calculated with K-nearest neighbor (KNN) and the support vector machine (SVM) methods, respectively, which were checked with 5-fold cross-validation method. The results showed that the hyperspectral images of three varieties of apples all became clear within wavelength of 941~1602nm. Among ten distance-types’ judgment of KNN with average reflection intensity at 200 wavelength-points, the identification accuracy of Chebychev, Euclidean and Minkowski reached the highest of 100% when the parameter K was set at 3 or 5. While using the support vector machine-radial basis function (SVM-RBF) model, the accuracy rate reached above 92% when the value of γ fell within 2-8~1. The highest recognition rate of this model reached 96.67% when γ was set at 2-5 and C took the value of 16 amd 32 at the same time. The results demonstrated that near-infrared hyperspectral imaging in combination with KNN was excellent and reliable for the rapid identification of apple varieties. This method could provide reference for identifying apple varieties in production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬惠玲,王若琳,蔡騁,王棟.基于高光譜成像的蘋果品種快速鑒別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):305-312. MA Huiling, WANG Ruolin, CAI Cheng, WANG Dong. Rapid Identification of Apple Varieties Based on Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):305-312.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-08-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-04-10
  • 出版日期:
文章二維碼