ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于PSO-SVR的植物纖維地膜抗張強(qiáng)度預(yù)測(cè)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD32B02-5)


Tensile Strength Prediction for Plant Fiber Mulch Based on PSO-SVR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為快速,、準(zhǔn)確地對(duì)生產(chǎn)過(guò)程中植物纖維地膜抗張強(qiáng)度進(jìn)行預(yù)測(cè),降低生產(chǎn)成本,,提高原料利用率,,以植物纖維地膜中試平臺(tái)為依托,,基于粒子群算法(PSO)優(yōu)化支持向量機(jī)回歸(SVR)模型,結(jié)合正交試驗(yàn)設(shè)計(jì)L25(56)方法,,以纖維打漿度,、施膠劑添加量、濕強(qiáng)劑添加量,、地膜定量,、混合比作為模型輸入?yún)?shù),以植物纖維地膜抗張強(qiáng)度為輸出進(jìn)行模擬預(yù)測(cè),,并將模擬結(jié)果與SVR,、BP、RBF智能算法模型進(jìn)行對(duì)比分析,。結(jié)果表明:PSO-SVR模型能夠較好地表達(dá)植物纖維地膜抗張強(qiáng)度與模型參數(shù)間的非線性關(guān)系,,并能根據(jù)輸入?yún)?shù)快速準(zhǔn)確地對(duì)植物纖維地膜抗張強(qiáng)度進(jìn)行預(yù)測(cè),測(cè)試集樣本中預(yù)測(cè)值與實(shí)際值間均方誤差,、決定系數(shù)和均方根誤差為0.117N2,、0.915、0.342N,;與其他智能算法(SVR,、BP、RBF)相比,,PSO-SVR算法模型具有更高的適用性與穩(wěn)定性,。研究結(jié)果可為生產(chǎn)過(guò)程中不同抄造工藝參數(shù)下植物纖維地膜抗張強(qiáng)度的在線監(jiān)控提供參考依據(jù)。

    Abstract:

    Straw fiber is a kind of huge renewable biological macromolecule material, and using crop straw as the raw material to manufacture plant fiber mulch is an ideal way of promoting comprehensive utilization of straw resource. Tensile strength of plant fiber mulch is a measure of damage caused by external stress. In order to accurately and effectively predict the tensile strength, reduce production cost and improve the utilization rate of raw materials, based on pilot-production line of plant fiber mulch, particle swarm optimization (PSO) used to optimize support vector machine regression (SVR) combined with the orthogonal test method (L25(56)) was proposed, namely, the PSO-SVR. The production processes variables were chosen, and the PSO-SVR model was established in Matlab 2011b. The input parameters affecting plant fiber mulch tensile strength through mechanism analysis were beating degree, dosage of wet strength agent, regulator, basis weight and mixture ratio;the evaluation index was tensice strength. The results were compared in terms of prediction accuracy with three prediction models respectively based on support vector machine regression (SVR), back propagation neural network regression (BP) and radial basis function neural network regression (RBF). The results obtained by using the PSO-SVR model showed that the mean square error was 0.117N2, the coefficient of determination was 0.915 and the root mean square error was 0.342N. The punishment factor and kernel parameter of SVR can select by PSO automatically. Compared with other intelligent algorithms, such as SVR, BP and RBF,, PSO-SVR algorithm possessed superior applicability and stability. Therefore, this method can better reflect the actual tensile strength of plant fiber film, which can be used as a theoretical basis for the intelligent controlling under different process conditions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉環(huán)宇,陳海濤,閔詩(shī)堯,張穎.基于PSO-SVR的植物纖維地膜抗張強(qiáng)度預(yù)測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):118-124. LIU Huanyu, CHEN Haitao, MIN Shiyao, ZHANG Ying. Tensile Strength Prediction for Plant Fiber Mulch Based on PSO-SVR[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):118-124.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-01-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-04-10
  • 出版日期:
文章二維碼