ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于正交設(shè)計(jì)模型的多目標(biāo)進(jìn)化算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51475142)和河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(17A460020,、17A460019)


Multi-objective Evolutionary Algorithm Based on Orthogonal Designing Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高多目標(biāo)進(jìn)化算法在求解復(fù)雜多目標(biāo)問(wèn)題上的收斂性和解集多樣性,,提出了一種基于正交設(shè)計(jì)模型的多目標(biāo)進(jìn)化算法。該算法在基于分解技術(shù)的多目標(biāo)進(jìn)化算法框架下,將正交實(shí)驗(yàn)設(shè)計(jì)方法同分解技術(shù)相融合,。利用正交實(shí)驗(yàn)設(shè)計(jì)方法,,有針對(duì)性地對(duì)父代個(gè)體進(jìn)行重組,,并生成多個(gè)保留優(yōu)良基因的子代個(gè)體,,避免了盲目性搜索以提高算法收斂性,并應(yīng)用分解技術(shù)選擇優(yōu)秀個(gè)體來(lái)維持全局搜索和局部尋優(yōu)的動(dòng)態(tài)平衡,。將該算法與目前典型的優(yōu)異算法在18個(gè)標(biāo)準(zhǔn)測(cè)試函數(shù)集上進(jìn)行對(duì)比測(cè)試,,仿真結(jié)果表明所提算法相比另外4種算法具有良好的競(jìng)爭(zhēng)力,,在保持良好收斂性的同時(shí),所獲得的Pareto前端分布更加均勻,,尤其在求解具有復(fù)雜Pareto解集的問(wèn)題時(shí),,能保持較好的搜索性能。為了測(cè)試算法在求解含有約束問(wèn)題的性能,,將其應(yīng)用于I型主梁多目標(biāo)優(yōu)化設(shè)計(jì)中,,獲得的Pareto前沿較均勻,且解集域較寬廣,,對(duì)比分析表明了算法的工程實(shí)用性,。

    Abstract:

    Aiming to improve the convergence and diversity of multiobjective evolutionary algorithms (MOEAs) for solving complicated high dimensional multi-objective optimization problems, a multi-objective evolutionary algorithm based on orthogonal designing model (MOEA/D-OD) was proposed. Under the framework of multi-objective evolutionary algorithm with decomposition scheme as typical characteristics, the orthogonal designing model (ODM) was incorporated into decomposition mechanism. By utilizing ODM, the good genes carried by the recombinant parents were obtained by offspring to avoid blindness of searching to improve the convergence of the proposed algorithm. The decomposition mechanism was applied to selection to balance exploitation and exploration. MOEA/D-OD was compared with four stateoftheart MOEAs on 18 benchmark testing problems. Experimental results indicated that MOEA/D-OD can obtain good convergence while having uniform distribution and wild coverage for Pareto sets. The searching performance can stay well when solving complex problems with complicated PS. To validate its performance on constraint multiobjective optimization problems, the proposed MOEA/D-OD was applied to solve the I-beam with two conflict objectives. Compared with other algorithms, the uniformly distributed Pareto sets obtained by MOEA/D-OD showed its practicability for engineering problems, which was an effective approach for solving high dimensional and complicated multi-objective optimization problems. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳金妹,王亞輝,賈晨輝.基于正交設(shè)計(jì)模型的多目標(biāo)進(jìn)化算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(2):362-369,392. WU Jinmei, WANG Yahui,JIA Chenhui. Multi-objective Evolutionary Algorithm Based on Orthogonal Designing Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(2):362-369,392.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-06-07
  • 最后修改日期:2017-02-10
  • 錄用日期:
  • 在線發(fā)布日期: 2017-02-10
  • 出版日期:
文章二維碼