ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于圖像處理的溫室黃瓜霜霉病診斷系統(tǒng)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31271618)、北京市葉類蔬菜產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目(BAIC07-2016)和天津市科技支撐計(jì)劃項(xiàng)目(15ZCZDNC00120)


Downy Mildew Diagnosis System for Greenhouse Cucumbers Based on Image Processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為進(jìn)一步提高溫室黃瓜霜霉病診斷的準(zhǔn)確率,構(gòu)建了一個基于圖像處理的溫室黃瓜霜霉病診斷系統(tǒng),。針對溫室黃瓜栽培現(xiàn)場采集的病害圖像,采用基于條件隨機(jī)場(Conditional random fields,,CRF)的圖像分割方法進(jìn)行病斑圖像分割,,并采用決策樹模型擴(kuò)展一元勢函數(shù),提高病斑圖像分割的準(zhǔn)確性,;將分割后的病斑圖像轉(zhuǎn)換到HSV顏色空間并提取其顏色,、紋理和形狀等25個特征,利用粗糙集方法進(jìn)行特征選擇與優(yōu)化,;構(gòu)建了基于徑向基核函數(shù)的SVM分類器,,準(zhǔn)確地識別與診斷溫室黃瓜霜霉病。系統(tǒng)試驗(yàn)驗(yàn)證結(jié)果表明,,該系統(tǒng)采用的病斑分割方法,,能夠克服復(fù)雜背景和光照條件的影響,準(zhǔn)確地提取病斑圖像,;采用粗糙集方法能夠有效地選擇分類特征,,將25個初始特征減少到12個,提高了運(yùn)行效率,;黃瓜霜霉病識別準(zhǔn)確率達(dá)到90%,,能夠滿足設(shè)施蔬菜葉部病害診斷的需求。

    Abstract:

    Downy mildew is one of the most common diseases suffered by greenhouse cucumbers, which may decrease the quality of greenhouse cucumbers and cause great economical loss to the farmers. In order to increase the accuracy of downy mildew diagnosis for greenhouse cucumbers, a downy mildew diagnosis system for greenhouse cucumbers was designed based on image processing. Focusing on the disease spots images captured in greenhouse field, the conditional random fields (CRF) based on segmentation method was utilized for the system to achieve disease spots images. When building the CRF model, decision tree model was used to extend unary potential function, which could effectively improve the accuracy of segmentation. The post-segmentation images and the disease spots images were transferred to HSV color space, and then 25 features, including color, texture and morphology features, were extracted. A subset of features was generated by rough set method. Finally, the RBF based SVM was used for the system to identify the greenhouse cucumber downy mildew. Taking cucumber downy mildew images obtained in greenhouse from agricultural innovation base of institute of plant protection, Tianjin academy of agricultural sciences as an example, the system was tested. The results showed that the segmentation method used by the system could effectively segment the disease spots images, which managed to overcome the noise caused by the illumination and complex background. A subset of 12 features was obtained by rough set method from the original feature set of 25 features, which improved the efficiency of the system. The identification accuracy of cucumber downy mildew reached 90%, which indicated that the downy mildew diagnosis system could meet the requirement of identification for greenhouse cucumbers.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬浚誠,溫皓杰,李鑫星,傅澤田,呂雄杰,張領(lǐng)先.基于圖像處理的溫室黃瓜霜霉病診斷系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(2):195-202. MA Juncheng, WEN Haojie, LI Xinxing, FU Zetian, Xiongjie,ZHANG Lingxian. Downy Mildew Diagnosis System for Greenhouse Cucumbers Based on Image Processing[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(2):195-202.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-05-11
  • 最后修改日期:2017-02-10
  • 錄用日期:
  • 在線發(fā)布日期: 2017-02-10
  • 出版日期:
文章二維碼