ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于隨機(jī)森林的玉米發(fā)育程度自動(dòng)測(cè)量方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31301235)


Automatic Measurement Method for Maize Ear Development Degree Based on Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高玉米果穗發(fā)育程度檢測(cè)的自動(dòng)化程度與精度,提出一種基于機(jī)器視覺(jué)技術(shù)的測(cè)量方法,。在隨機(jī)森林機(jī)器學(xué)習(xí)算法的基礎(chǔ)上構(gòu)造禿尖,、干癟和籽粒區(qū)域的識(shí)別模型,。該模型由多個(gè)獨(dú)立同分布的弱分類(lèi)器構(gòu)成,,對(duì)輸入的訓(xùn)練樣本進(jìn)行列和行兩個(gè)方向上的隨機(jī)采樣,。比較隨機(jī)森林模型和決策樹(shù)模型的分類(lèi)效果可知隨機(jī)森林模型有效避免了過(guò)擬合和局部收斂現(xiàn)象的產(chǎn)生,,并具有良好的推廣能力,。為確定最優(yōu)的弱分類(lèi)器數(shù)目,,選擇弱分類(lèi)器個(gè)數(shù)為訓(xùn)練樣本數(shù)量的1/80,、1/40、1/20,、1/10,、1/5、1/4時(shí)分別構(gòu)建隨機(jī)森林分類(lèi)器,。研究結(jié)果表明,,當(dāng)隨機(jī)森林中弱分類(lèi)器個(gè)數(shù)為訓(xùn)練樣本數(shù)量的1/20時(shí),模型的識(shí)別率與穩(wěn)定性最好,。然后,,以最優(yōu)的隨機(jī)森林模型作為分類(lèi)器構(gòu)建玉米果穗不同發(fā)育程度自動(dòng)檢測(cè)方法。試驗(yàn)結(jié)果表明,,各區(qū)域長(zhǎng)度測(cè)量的準(zhǔn)確性均在95%以上,,測(cè)量速度可達(dá)30個(gè)/min以上,。

    Abstract:

    In the process of maize breeding, the development degree of maize ear is one of the most important parameters for yield related traits. In order to improve the degree of automation and accuracy of maize ear development degree detection, a measurement method was proposed based on machine vision technology. An identification model was constructed on the basis of random forest principal at first. The model was composed of a group of weak classifiers which were independent and identically distributed. The weak classifiers selected samples from the input training samples randomly along columns and rows. The experiment which compared random forest model with decision tree model on the classification effect showed that random forest classifier could not only avoid over-fitting and local convergence effectively but also have good generalization ability. Then, in order to determine the optimal number of weak classifiers, six random forest models were built. Their weak classifier number were separately one-eightieth, one-fortieth, one-twentieth, one-tenth, one-fifth, one-fourth of training samples count. The results showed that the model had good accuracy and stability when the number of weak classifiers was one-twentieth of training samples count. Finally, the optimal random forest model was used as the classifier to build the automatic maize ear development degree detection method. The experiment results showed that the measurement accuracy on length of each area was more than 95% and the measurement speed was more than 30 maize ears per minute.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

石禮娟,盧軍.基于隨機(jī)森林的玉米發(fā)育程度自動(dòng)測(cè)量方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):169-174. SHI Lijuan, LU Jun. Automatic Measurement Method for Maize Ear Development Degree Based on Random Forest[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(1):169-174.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-05-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-01-10
  • 出版日期:
文章二維碼